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Abstract. In open societies of agents, where agents are autonomous and
heterogeneous, it is not realistic to assume that agents will always act so as
to comply to interaction protocols. Thus, the need arises for a formalism to
specify constraints on agent interaction, and for a tool able to observe and
check for agent compliance to interaction protocols. In this paper we present a
Java-Prolog software component built on logic programming technology, which
can be used to verify compliance of agent interaction to protocols, and that has
been integrated with PROSOCS [Stathis et al., 2004].∗

Keywords: computational logic, logic programming, multi-agent communica-
tion, agent interaction, protocol verification, implementation

1 Introduction

Agent interaction in multiagent systems is usually ruled by interaction protocols. In
open societies of agents, where agents can be heterogeneous and, in general, their

∗This article will appear in a Special Issue of Applied Artificial Intelligence, Taylor & Francis
(2005)



internals cannot be accessed, it is not realistic to assume that agents are built so as to
always be compliant to interaction protocols. In this perspective, the need arises for
a formalism to constrain the agents’ observable behaviour rather than their internal
(mental) structure or state, and for a tool to verify compliance of agent interaction
to a given specification.

The social approach to the definition of interaction protocols and semantics of
Agent Communication Languages is a noteworthy attempt to meet these require-
ments. Significant contributions have been given by Yolum and Singh [2002], Artikis
et al. [2002], Fornara and Colombetti [2003] and Verdicchio and Colombetti [2003].

In previous work [Alberti et al., 2003c], we proposed to this purpose a logic-
based formalism, called Social Integrity Constraints (icS). icS can be used to provide
semantics to communicative actions and protocols which define the agent interaction
in an open social environment. Such a semantics is given in terms of expectations
about the behaviour of agents based on a history of observed actions. icS can be
viewed as integrity constraints in an abductive framework [Alberti et al., 2003b], so
as to exploit well-established results from Abductive Logic Programming [Kakas et
al., 1993], and define a correct proof-procedure that can be used for verification of
compliance of agent behaviour to a specification. The specification can, thus, also
be interpreted as an abductive logic program for verification of compliance. This
approach is described in [Alberti et al., 2003d].

In this paper, we describe SOCS-SI1: a Java-Prolog-CHR based implementation
of the interaction verification framework based on the proof-procedure defined in
[Alberti et al., 2003d]. The intended use of SOCS-SI is in combination with agent
platforms, such as PROSOCS [Stathis et al., 2004], in a way that allows for on-
the-fly verification of compliance to protocols. In SOCS-SI, the proof-procedure is
part of an integrated environment, which also contains interface modules to allow
for such a combination, and a Graphical User Interface (GUI). The GUI provides an
intuitive way to observe the actual behaviour of the society members with respect
to their expected behaviour, and to detect possible deviations.

Following the description of SOCS-SI, we show through examples its possible
use in the design of the agent interaction space, in terms of Agent Communication
Language semantics and Interaction Protocols and properties definition.

The paper is structured as follows. In Sect. 2, we give a brief, informal intro-
duction to the framework and to the proof-procedure. In Sect. 3, we present the
implementation of the proof-procedure. In Sect. 4 we demonstrate the use of SOCS-
SI for interaction space design in open agent systems. Discussion of related work
and conclusions follow.

1“SOCS” is the acronym of the EU-funded project (IST-2001-32530) that partially supported
this work [SOCS, 2001]. SI stands for Social Infrastructure.
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2 Logic-based Specification and Verification

In this section we give motivations and the necessary background on the formal
framework proposed by Alberti et al. [2003a; 2003c; 2003b] for the specification of
agent interaction in open societies of agents.

Various definitions have been given in the literature for openness. According
to Davidsson [2001], in an open (artificial) society “there are no restrictions for
agents/processes to join/leave the society”. According to Artikis et al. [2002] a
society is open if it does not constrain the agents to be based on a same technology or
framework, and can possibly be non-cooperative. In both cases, we cannot assume,
for example, that in an open society all agents have beliefs, desires and intentions
[Kinny et al., 1996], and, even if they do, we cannot assume to have access to
their internals without severely undermining their autonomy. Thus, the check of
compliance of agents to protocols can be performed only by observing their externally
visible behaviour.

The framework assumes the existence of an entity (Social Compliance Verifier or
SCV, for short) which is external to agents, and is devoted to check their compliance
to the specification of agent interaction.

The SCV is aware of the ongoing social agent interaction: this is represented
by a set of (ground) facts called events, and indicated by functor H. For exam-
ple, H(request(ai, aj , give(10e), d1), 7am) represents the fact that agent ai requested
agent aj to give 10e, in the context of interaction d1 (dialogue identifier) at time
7am.2

In open agent societies, the agent behaviour is unpredictable, because agents
are autonomous. However, interaction protocols can be defined to let autonomous
agents interact in a social context. In that case, it becomes possible to reason upon
the expected (future) social behaviour of agents, given the observations made on
their current behaviour and the defined social protocols. If protocols are engineered
so as to define the “desirable” patterns of social interaction, e.g. by having in mind
the properties that a system of agents complying to such protocols will exhibit,
expectations represent in some sense the “ideal” behaviour of a society. Expectations
can be positive (events expected to happen, indicated by the functor E) or negative
(events expected not to happen, functor EN). Expectations have the same format
as events, but they will, typically, contain variables, to indicate that expected events
are not completely specified, leaving freedom degrees to the agents. Constraints à la
CLP (Constraint Logic Programming [Jaffar and Maher, 1994]) can be imposed on
variables, in order to refine and restrict the focus of the expectations. For instance,

E(accept(ak, aj , give(M), d2), Ta),M ≥ 10e, Ta ≤ 11pm

2We make the simplifying assumption about time of events, that the time of sending a message
is the same as receiving it, and that such time is assigned by the social framework.
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represents the expectation for agent ak to accept giving agent aj an amount M
of money, in the context of interaction d2 (dialogue identifier) at time Ta; CLP
constraints say that M is expected to be greater or equal than 10e, and Ta to be
not later than 11pm.

Given a set of observed events and the current expectations, Social Integrity
Constraints (icS) define what new expectations are to be generated in the society.

Let us consider an example with two agents involved (although icS can be applied
to any-party agent interaction):

H(request(A,B, P, D), T1)
→E(accept(B, A, P, D), T2), T2 ≤ T1 + τ

∨E(refuse(B, A, P,D), T2), T2 ≤ T1 + τ

(1)

states that, if agent A requests P to agent B, in the context of interaction D at time
T1, then agent B is expected to accept or refuse P by τ time units after the request.

The following icS :

H(accept(A, B, P, D), T1)
→EN(refuse(A,B, P,D), T2), T2 ≥ T1

(2)

H(refuse(A,B, P, D), T1)
→EN(accept(A,B, P, D), T2), T2 ≥ T1

(3)

express, instead, mutual exclusiveness between accept and refuse: if an agent per-
forms an accept, it is expected not to perform a refuse with the same content after
the accept, and vice versa. In this way, we are able to define protocols as sets of
forward rules, relating events to expectations.

In this perspective, observed social events represent known facts about the social
behaviour of agents, whereas expectations represent hypotheses about their ideal
future behaviour. The formal machinery that we chose to adopt in this context is
therefore one supporting hypothetical reasoning.

Abduction [Kakas et al., 1993] is a reasoning paradigm which consists of for-
mulating hypotheses (called abducibles) to account for observations; in most ab-
ductive frameworks, integrity constraints are imposed over possible hypotheses in
order to prevent inconsistent explanations. The idea behind our framework is to
formalise expectations about agent behaviour as abducibles, and to use Social In-
tegrity Constraints such as (1), (2) or (3) to rule out, among the possible expected
agent behaviours, those violating the interaction protocols. Thanks to the abductive
framework, goal-directed behaviour of the society can be easily implemented. For
example, the society might request that at least one exchange should be executed
successfully before 7pm, and have the following goal:

E(accept(B,A, P, D), T ), T ≤ 7pm.
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Given the partial history of a society, an abductive proof-procedure, SCIFF [Al-
berti et al., 2003d], generates expectations about agent behaviour so as to comply
with Social Integrity Constraints. SCIFF is inspired by the IFF proof-procedure
[Fung and Kowalski, 1997], augmented as needed to manage CLP constraints. The
most distinctive features of SCIFF are, however, (i) its ability to check that the
generated expectations are fulfilled by the actual agent behaviour (i.e., that events
expected (not) to happen have actually (not) happened), which cannot be assumed
a priori in an open society of autonomous agents, and (ii) its ability to raise excep-
tions, called violations when the expectations are not met.

3 The SOCS-SI Tool

The implementation of the SOCS-SI tool for compliance verification of agent inter-
action is composed of an implementation of the proof-procedure specified in [Alberti
et al., 2003d], interfaced to a graphical user interface and to a component for the
observation of agent interaction.

The SOCS-SI software application is composed of a set of modules. All the
components except the proof-procedure are implemented in the Java language.

The core of SOCS-SI is composed of three main modules (see Fig. 1), namely:

• Event Recorder : fetches events from different sources and stores them inside
the History Manager.

• History Manager : receives events from the Event Recorder and composes them
into an “event history”.

• Social Compliance Verifier : fetches events from the History Manager and
passes them on to the proof-procedure in order to check the compliance of the
history to the specification.

In our model, agents communicate by exchanging messages, which are then trans-
lated into H events (see Sect. 3.3). The Event Recorder fetches events and records
them into the History Manager, where they become available to the proof-procedure
(see Sect. 3.1). As soon as the proof-procedure is ready to process a new event, it
fetches one from the History Manager. The event is processed and the results of the
computation are returned to the GUI. The proof-procedure then continues its com-
putation by fetching another event if there is any available, otherwise it suspends,
waiting for new events.

A fourth module, named Init&Control Module provides for initialisation of all
the components in the proper order. It receives as initial input a set of protocols
defined by the user, which will be used by the proof-procedure in order to check the
compliance of agents to the specification.
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Figure 1. Overview of the SOCS-SI architecture

3.1 Implementation of the proof-procedure

As its ancestor, the IFF proof procedure [Fung and Kowalski, 1997], the SCIFF
proof-procedure is a transition system that rewrites logic formulae into equivalent
logic formulae. Each formula is a Node of the proof-procedure, and can be rewritten
into one or more nodes, logically in OR (so building an OR-tree). Elements in a
formula (node) are arranged in a tuple that carries the following information:

T ≡ 〈R,CS, PSIC,EXP,HAP,FULF,VIOL〉 (4)

where R is the resolvent, CS is the constraint store (as in CLP), PSIC is a set of
implications (initially set as ICS), HAP is the current history, EXP, FULF, and
VIOL are, respectively, the set of pending, fulfilled, and violated expectations.

For the implementation of the SCIFF proof-procedure, SICStus Prolog [SICStus,
2003] has been chosen, for the following reasons:

• the Prolog language offers built-in facilities for the implementation of dynamic
data structures and (customisable) search strategies;

• SICStus Prolog allows for state-of-the-art CLP; in particular, the libraries
CHR, CLPB, and CLPFD have been exploited;

• SICStus Prolog features a bidirectional Java-Prolog interface (Jasper), which
has been necessary to interface the proof-procedure with the other modules of
the social demonstrator.
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As the IFF proof-procedure [Fung and Kowalski, 1997], the SCIFF proof-procedure
[Alberti et al., 2003d] specifies the proof tree, leaving the search strategy to be de-
fined at implementation level. The implementation is based on a depth-first strategy.
This choice, enabling us to tailor the implementation for the built-in computational
features of Prolog, allows for a simple and efficient implementation of the proof-
procedure.

The Prolog-CHR module implements the transitions of the proof-procedure.
CHR [Frühwirth, 1998] is a rewriting system for implementing new constraint solvers.
It is based on forward rules that rewrite constraints into other constraints. For ex-
ample, in order to define the solver for the constraint ≤, one can write the following
rules:

antisymmetry @ A ≤ B,B ≤ A <=> A = B
transitivity @ A ≤ B, B ≤ C ==> A ≤ C

The first rule is a simplification rule, and says that if both A ≤ B and B ≤ A are
in the constraint store, then you can replace both of them with the new constraint
A = B (in CLP, unification is a constraint). The second is a propagation rule, adds
a new constraint A ≤ C when both A ≤ B and B ≤ C are in the store. Thanks
to these two simple rules, the constraints X ≤ Y , Y ≤ Z, Z ≤ X are resolved and
X = Y = Z is inferred.

The data structures of the proof-procedure (eg. PSIC, EXP) are implemented as
CHR constraints, so the transitions can be straightforwardly implemented as CHR
rules. For example, each happened event is represented by means of a h/2 CHR
constraint, whose (ground) arguments are the content and the time of the event.
An example of event is:

h(request(seller,buyer,give(10e),1),10am)

Expectations are represented by means of CHR constraints e for E expectations
and en for EN expectations. CHR interfaces easily with other constraint solvers, so
we can impose constraints on the variables, like

e(do(buyer,seller,give(10e),1),T), T<5pm

and this expectation will not match with (and be fulfilled by), for example, a hap-
pened event

h(do(buyer,seller,give(10e),1),8pm).

Given this representation, the SCIFF transitions can be mapped into CHR rules,
in a sense defining a new constraint solver for the resolution of expectations. For
example, we have a transition of E-consistency, that ensures that the final derivation
node does not contain both the expectations of an event to happen and to not
happen:
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e_consistency @
e(E1,T1), en(E2,T2)
==>
reif_unify((E1,T1),(E2,T2),0).

Such a rule, for each pair (E(E1, T1),EN(E2, T2)) imposes the dis-unification con-
straint (E1, T1) 6= (E2, T2).

The fulfillment rule is also rather straightforward:

fulfillment @
h(HEvent,HTime), e(EEvent,ETime)
==>
may_unify(HEvent,EEvent)
|
renaming((EEvent,ETime),(EEvent1,ETime1)),
case_analysis_fulfillment((HEvent,HTime),(EEvent,ETime)).

The rule is applied when an event and a pending expectation whose content have
the same functor and arity (checked by the may_unify/2 predicate in the guard of
the rule) are in the CHR store. In this case, a renaming is made of the expectation3

and the case_analysis_fulfillment/7 predicate is called. Two nodes are created
by case_analysis_fulfillment/7:

• a first node where unification is imposed between the expectation and the
event, the e(EEvent,ETime) constraint for the expectation is removed from the
constraint store and the fulf(e(EEvent,ETime)) CHR constraint is imposed
(implementing the fact that the expectation is moved from the set EXP of
pending expectations to the FULF one of fulfilled expectations);

• and a second node where dis-unification between the expectation and the event
is imposed.

3.2 The Java-Prolog Interface

The main task of the Java portion of the Social Compliance Verifier is to interact
with the proof-procedure. The SICStus Runtime libraries are accessed from Java
using the Jasper package and native interfaces. All data exchanged between the
Java sides and the Prolog program is translated into String objects. In order to
process and filter the String objects, Java regular expressions are extensively used.
These expressions are defined in a configuration file, loaded at initialisation time.

3This step is necessary because some expectations may contain universally quantified variables.
The issue is discussed in detail in a technical report [Alberti et al., 2003d].
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Our software application can deal with different proof-procedure implementations
and with different ACL performatives, without any a priori assumption about the
format of the exchanged parameters. It is sufficient to properly re-define the regular
expressions in the config file, and a new proof-procedure can be easily integrated
into the software application.

3.3 Messages vs. Events

While the proof-procedure can deal with events of any format that can be represented
as a Prolog term, for the purposes of this work we can assume that the agents
communicate by exchanging “messages”, where a message is defined by the following
data set:

• a sender

• a receiver (one or more than one)

• a dialogue identifier

• a time

• a communication performative

• a list of parameters of such a performative

Our software can deal with any platform for agents, as long as the communication
between agents can be represented in such a way. Inside the application, each
message is translated into an “event”.

3.4 The Recorder Interface

The Event Recorder fetches events from the external world using modules, each
module being specialised for a specific source. We developed modules for interfac-
ing with agent platforms, starting with PROSOCS [Stathis et al., 2004]. We are
currently experimenting with other platforms: we had some successful experiments
with JADE [Bellifemine et al., 2000] and TuCSoN [Ricci et al., 2002], and with
checking compliance of e-mail messages. For testing and debugging purposes, we
also developed modules to interact with the user prompt, as well as with the file sys-
tem; it is possible to add as many specialised modules as desired, provided that they
implement the interface RecorderInterface. In order to integrate our application
with an already existing platform the user should:

1. create a Java class that implements the RecorderInterface

2. select it as message source during the application configuration (either through
the configuration GUI, or by modifying the config file).
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The RecorderInterface that we propose defines three methods, where the class
SOCSEvent is our internal representation of events:

• public SOCSEvent listen(). Returns an instance of the SOCSEvent class if
a message is available, or it waits (suspends) until a message arrives.

• public long speak(SOCSEvent aMsg). Gives our application the capability
to communicate with agents, by sending a message. It returns the time the
message is sent.

• public long getTime(). Returns the current time. It is used to check tem-
poral deadlines.

The RecorderInterface has originally been defined as a subset of the low level
communication API defined in the PROSOCS platform [Stathis et al., 2004], which
is used to perform controlled experiments in the context of global computing ap-
plications, within the SOCS project [SOCS, 2001]. However, one of the design
specifications we strove to obtain was to have an interface general enough to allow
integration with most agents platforms currently available.

3.5 The Graphical User Interface

The Graphical User Interface is implemented by using the Swing graphic library,
and implements the Model-View-Control programming pattern. The main window
is composed of three areas (or sub-windows), and of a button bar containing the
controls (Figure 2).

The bottom area contains the list of all the messages received by the SOCS-SI:
the next message to be processed by the proof-procedure is emphasised (in Fig. 2 it
is the third row, which is darker). The area on the left contains the list of agents
known by the society, i.e., agents that have performed at least one communicative
action (coherently with the notion of openness by Davidsson [2001]). The larger
frame on the right contains the results of the computation, returned by the proof-
procedure. These results are expressed in terms of society expectations about the
future behaviour of agents, and also in terms of fulfilled expectations and violations
of social rules. By selecting an agent from the left pane, it is possible to restrict
the information shown on the larger pane to be only that relevant to that particular
agent. Among other features, it is possible to execute step-by-step the application,
so that it elaborates one message at a time and then waits for a user acknowledge
(similarly to the debug interface of modern compilers).

Protocols are loaded into the tool by means of a button; they are simply provided
as text files with a syntax strictly adherent to the formal one presented earlier. For
example, Equation 1 is rewritten (in the case τ = 3) as:
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Figure 2. A screenshot of the application

H(tell(A, B, request(P), D), T1)
--->
E(tell(B, A, accept(P), D), T2) /\ T2 <= T1 + 3
\/
E(tell(B, A, refuse(P), D), T2) /\ T2 <= T1 + 3.

Finally, a tree-view of the whole computation is provided (Figure 3); interest-
ingly, the shown tree bears both an operational and a logical interpretation.

The operational interpretation is an intuitive graphical form of a log-file, showing
the most significant computational steps, useful for debugging purposes.

The logical meaning is an or-tree of the possible derivations timed by the incom-
ing events. For each incoming event that enriches the knowledge base, the frontier of
the explored proof-tree (which is a logical disjunction, as in various proof-procedures
[Fung and Kowalski, 1997]) is shown.

The user can inspect each of the nodes, and see in the main window the state of
the computation (i.e., the above given tuple, Eq. 4), having the logical interpretation
of a conjunction (of logical formulae of the types in the SCIFF language: abducibles,
constraints, literals, implications).

Presentation of the frontier of the derivation tree is important for explanation rea-
sons. Typically, logic languages can provide two types of answers: a success/failure
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Figure 3. A screenshot of the application

answer and an explanation answer. In case of success, logic languages explain why:
Prolog returns simply a binding for the variables in the goal, CLP can return also
constraints, and ALP (Abductive Logic Programming) returns a set of abducibles,
just to name a few. But in case of failure, there is typically no explanation.

The tree-view provides information also in case of failure: the set of failing
nodes, each with underlined the cause of failure (e.g., a violated expectation or an
unsatisfiable CLP constraint).

Example 3.1 As an example, let us consider the request-accept-refuse protocol
(Eq. 1) with deadline τ = 3, and let us assume that the following events have hap-
pened:

HAP = {H(request(a, b, give(10e), d1), 1pm), (5)
H(refuse(b, a, give(10e), d1), 10pm)}. (6)

As the first event happens (at 1pm), the SCIFF proof-procedure generates two
branches (Figure 3.1): in one it assumes that agent b will reply accept:

E(accept(b, a, give(10e), 1), T ), T < 4pm (7)
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∅

H(request, 1)
E(accept, T )

T < 4
E(refuse, T )

T < 4

H(refuse, 10)
E(accept, T )

T < 4
E(refuse, T )
T = 10 ∧ T < 4

E(refuse, T )
T 6= 10 ∧ T < 4

Figure 4. Example of proof-tree

in the second assumes that b replies refuse within the given deadline

E(refuse(b, a, give(10e), 1), T ), T < 4pm. (8)

When the event (6) happens, the proof-procedure tries to match it with the raised
expectation in each of the branches. In the first branch, accept(. . . ) cannot unify
with refuse(. . . ), so the expectation (7) is declared violated and is the culprit of
failure in this branch.

In the second branch, the proof-procedure generates two children:

• in one it will assume that the raised expectation (8) matches with the event
(6); in this case it will try the unification T = 10pm, that does not satisfy the
CLP constraint T < 4pm: the culprit of failure is, in this case, the inconsistent
constraint store

• in the other, it assumes that (8) does not match with (6), and impose T 6=
10pm; but, in this case, there is no event fulfilling the expectation, so there is
a failure and the culprit is the violated expectation (8).

Now, besides the description of the operational behaviour of the SCIFF proof-
procedure, the frontier of the tree logically explains why the computation failed:

violated E(accept(b, a, give(10e), 1), T )
∧ violated E(refuse(b, a, give(10e), 1), T ), T 6= 10pm
∧ inconsistent T = 10pm ∧ T < 4pm

i.e., there is no such event matching with the first expectation, and there is no such
event matching with the second, and it is inconsistent that T is 10pm and, at the
same time, before 4pm.

The conjunction of the culprits in the alternative leafs can be thought as one
explanation of the failure. Such an explanation is currently not minimal: in one
node there could be more reasons for a failure, and one of them could be common
for all the nodes in the frontier, so it would be the minimal explanation of failure.
For efficiency motivations, only the first encountered reason is emphasised and taken
as the culprit. We are currently working towards providing a minimal set of culprits.
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4 Using SOCS-SI for interaction design in open multi-
agent systems

In the previous sections we have presented SOCS-SI as a tool to verify the com-
pliance of heterogenous agents to some defined social protocols, which are part of
the definition of an existing social infrastructure. In this section, we show another
possibility to use SOCS-SI, taking a different perspective. We will assume that
the protocols are not yet defined, and consider the problem of designing the agent
interaction space: a challenging aspect in the engineering of open systems.

The study and specification of interaction has since long been a central topic of
agent research. In recent years, considerable effort has been devoted to developing
on the one hand methodologies and tools for the verification of agent interaction, on
the other hand languages and formalisms for the specification of Agent Communi-
cation Language (ACL) semantics and Interaction Protocols (IPs). Work on ACLs
typically aims at providing the tools for heterogeneous agents to interact with each
other by using a common set of communication “primitives”, with a well understood
semantics. On top of ACLs, IPs define the allowed/expected sequences of commu-
nication primitives that constitute an articulated interaction among a number of
agents, be it a dialogue or a multi-party interaction, such an auction. Work on pro-
tocols is greatly devoted to defining mechanisms in such a way that some important
properties are guaranteed. Some examples of properties are incentive-compatibility
in the case of auction mechanisms, and termination in the case of negotiation di-
alogues. In the following, we will refer to the conjunct of ACLs and IPs as to the
agent “interaction space”.

As discussed by Omicini and Ossowski [2003], following Gelernter and Carrero
[1992], the agent interaction space could be designed using a subjective perspective,
derived from the agent specifications, or using an objective coordination model, in-
dependently of the agents which will populate the system. If we follow an objective
perspective, differently from other agent oriented software methodologies where en-
gineering societies mainly aims at implementing agents, we can focus on proving
properties of agent interaction, independently of the very agents. The design of
the interaction space can be then described as an iterated process consisting of the
following phases as it has been described in [Torroni et al., 2004]:

1. definition/refinement of the environment (agents systems and interaction me-
dia): this can be done following another agent-oriented software engineering
methodology, such as those cited above;

2. definition/refinement of the interaction space (in particular, ACL semantics
and protocol specification);

3. definition/refinement of formal properties that we would like the system to
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exhibit, and their verification;

4. if properties are disproved, back to phase 1.

Once a model is done which satisfies the properties that we have defined, it
can be implemented into a concrete agent system. We will now show the use of
SOCS-SI within the above methodology, adopting as a running example the design
of an auction interaction setting.

4.1 Environment definition

The environment is composed by the agents themselves, the communication media,
and by the contextual entities that are relevant to the operation of the agent system.

In an auction example, the environment could include a variable number of
agents having one of two possible roles (n bidders, n ≥ 1, and one auctioneer),
and a communication medium that permits bidirectional communication between
auctioneer and each bidder.

SOCS-SI does not play a role in this step, which could well be done by following
any approach from literature, such as the Gaia methodology [Wooldridge et al.,
2000], the KGR approach [Kinny et al., 1996], or the Agentis approach [d’Inverno
et al., 1998], and possibly achieving a first definition of the entities agents, and a
concrete realisation of the multi-agent system. When we proceed to the subsequent
phases, we might find out that the current definition of the environment does not
allow for modelling a system which exhibits the properties that we are interested in.
In that case, this step should be iterated starting from different assumptions.

4.2 Interaction space definition

The interaction space is defined in terms of ACLs and IPs. This can be done by
using Social Integrity Constraints as a uniform means to specify both ACL semantics
and IPs.

In order to put things more concretely, let us give the specification of an auction
context, where agents interact by proposing items on sale, bidding values to buy
such items, and notifying the winner. The semantics of communicative acts such as
bid and win can be defined as their intended social meaning.

Intuitively, the semantics of “bid” is a commitment to pay the declared amount of
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money for an item. A possible way to define such a semantics could be the following:

H(tell(B, A, bid(Item, Q), D), TBid),
H(tell(A,B, answ(win, Item,Q), D), TWin),
H(tell(A,B, deliver(Item), D), TDel)

→E(tell(B,A, pay(Item, Q), D), TPay),
TPay < TDel + TPay Deadline

(9)

The semantics of the communication primitive “bid” formally defines in (9) what
could be informally read as follows: “If an agent A makes a bid for some Item, and
the auctioneer responds to such a bid by telling win, then if A is delivered the
Item, he is expected to pay by some deadline”. Similarly by answering “win”, the
auctioneer declares his will to provide the item:

H(tell(B, A, bid(Item,Q), D), TBid),
H(tell(A,B, answ(win, Item,Q), D), TWin),

→E(tell(A,B, deliver(Item), D), TDel),
TDel < TWin + TDeliver Deadline

(10)

Various types of auction protocols are used in human and agent commerce; take,
for example, the English auction, the Dutch auction, the First Price Sealed Bid
(FPSB) auction, . . . . These auction protocols have different interaction sequences,
but they all share the semantics of the basic communication actions, like “bid” and
“win”. Communicative acts, such as bid and answ(win), can be defined in a general
enough way, such that we can use the same acts in different protocols. IPs can
then be seen, in this perspective, as additional sets of constraints, defining relations
among communicative actions, which are to be added to those already defining the
ACL, and which have to be consistent with them.

Let us consider the English auction protocol definition. In an English auction,
the value of bids must be monotonically growing with time (11). Once a bid is made,
either a higher bid is made (before a deadline), or the agent who made the bid wins
the auction (12). Only one agent is the winner (13).4

4Indeed, since we provide a uniform syntax for protocol, ACL and properties specification, it
then becomes a design choice to classify a certain icS as part of the semantic specification of a
communication act or as a part of a protocol. If we consider the fact that only one agent is
the “’winner” as an intrinsic property of the win communicative act, which should hold true for all
protocols using win, then Eq. (13) could also be considered as defining the semantics of win together
with Eq. (10).
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The following icS can be used to define such a protocol:

H(tell(Bidder1, Auc, bid(Item,Q1)), T1)
→ EN(tell(Bidder2, Auc, bid(Item,Q2)), T2), T2 > T1, Q2 ≤ Q1

(11)

H(tell(Auc,Bidders, opauc(Item, τ, Tnotify, english), D), Topen),
H(tell(Bidder1, Auc, bid(Item,Q1), D), T1)

→ E(tell(Bidder2, Auc, bid(Item, Q2), D), T2),
Q2 > Q1, T2 < T1 + τ

∨ E(tell(Auc,Bidder1, answ(win, Item, Q1), D), Twin),
Twin < T1 + Tnotify

(12)

H(tell(Auc,Bwin, answ(win, Item,Qwin), D), Twin)
→ EN(tell(Auc,B1, answ(win, Item, Q1), D), TQ), Bwin 6= B1

(13)

A different protocol is the First Price Sealed Bid (FPSB) auction protocol. In
the FPSB auction, agents post their bids all during the same time interval, after the
auction is declared open and before the deadline for bids has passed. The agent who
makes the highest bid wins. The FPSB auction protocol can be defined by Eq. 13
together with the following icS :

H(tell(Auc,Bidders, opauc(Item, Tdead, Tnotify, fpsb), D), Topen),
H(tell(Bidder1, Auc, bid(Item, Q1), D), T1)

→ E(tell(Bidder2, Auc, bid(Item,Q2), D), T2),
Q2 > Q1, T2 < Tdead

∨ E(tell(Auc, Bidder1, answ(win, Item, Q1), D), Twin),
Twin < Tdead + Tnotify

(14)

By following an objective approach to interaction design, we detach the semantic
specification of communicative acts and interaction protocols from the specification
of agents. We can use SOCS-SI to test if the icS written as (9)-(14) do indeed
produce sensible expectations or not. The availability of an implemented proof-
procedure makes it possible to ground the validation of such a design step on a
number of sample interaction traces, which can be kept as a collection of test cases
or benchmarks, and parsed by the File System interface to the Event Recorder. The
results of the runs of such sample traces can be visualized through the SOCS-SI
GUI, and information shown on the tree-view can be used to possibly refine the
existing icS or to add some new ones. A similar approach can be followed when
validating the interaction space with respect to the properties that we would like to
achieve by it, as we will discuss in the next section.
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4.3 Properties definition and verification

An interaction space is “properly” designed if it exhibits some formally defined
properties. For instance, in the design of an auction protocol, we would like to
ensure that the agent who utters the highest bid will be assigned the goods at a
certain price, and that it will pay for the price specified in its bid.

Following Pitt and Guerin [2002], the definition of properties, again, could follow
a declarative and logic-based methodology, and in particular it could be done by
means of integrity constraints. Let us consider the following example, adapted from
[Pitt and Guerin, 2002].

The property informally stated above (the best bid wins) can be formally defined
as follows: “For all courses of events (HAP) such that there exists a consistent set
of expectations (EXP), and such EXP is fulfilled by HAP (compliance condition),
if there is a bid, then there is a winner”:

H(tell(Auc,Bidder, opauc(Item, Tdead, Tnotify, T ype), D), Topen)
H(tell(Bidder1, Auc, bid(Item, Q1), D), T1)

→ E(tell(Auc,Bidder2, answ(win, Item, Q2), D), Twin)
(15)

Checking this property in this framework means in general considering all possi-
ble histories HAP complying with the ACLs and IPs, and checking whether prop-
erty (15) is entailed by HAP.

Another property could be: “for all compliant courses of events including a bid,
there exists a deadline Tdead by which an agent is awarded to be the auction winner”:

H(tell(Auc,Bidder, opauc(Item, Tdead, Tnotify, T ype), D), Topen)
H(tell(Bidder1, Auc, bid(Item, Q1), D), T1)

→ E(tell(Auc,Bidder2, answ(win, Item, Q2), D), Twin),
Twin < Tdead + Tnotify

(16)

Verifying this kind of entailment given a specific history instance is not hard,
since all history instances are ground sets of facts. Therefore, this method is directly
applicable when the set of possible histories of events is finite, or when we are
interested in verifying properties only in some particular situations, which could be
given a-priori. These can indeed be the sample traces used in the previous step for
defining the interaction space itself.

During the verification of properties, it may turn out that under some circum-
stances a property is not achieved. In that case, this step or some previous ones
should be iterated, and either the interaction space definition or the target properties
refined.
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For instance, it is easy to see that property (15) holds for both the English and
the FPSB auction protocol, whereas it is possible to find a counterexample showing
that property (16) does not hold for the the English auction protocol.

Once this turns out, if property (16) is considered important in the system that
we are designing, an option could be to modify the English auction protocol, for
instance by introducing a new icS . But, one could also reconsider the need for such
a property, and realise that a less constraining property is enough.

Another situation that may occur is that some history instance produces only
inconsistent sets of expectations (e.g., by producing both an expectation and its
denial) but no violation. This is normally a sign that the interaction space has
been ill-defined. Conversely, we also aim to avoid having history instances which we
intend to be marked as inconsistent, but for which the SCIFF generates a success
node. This normally means that the interaction space is under-constrained, and
again, we need to refine its specification.

5 Related work

The social approach to the definition of interaction protocols and semantics of Agent
Communication Languages has been documented in several noteworthy contribu-
tions of the past years. Among them, Artikis et al. [2002] present a formal framework
for specifying systems where the behaviour of the members and their interactions
cannot be predicted in advance, and for reasoning about and verifying the properties
of such systems. The framework relies upon a deontic logic formalism, and on the
concepts of permission, prohibition, and empowerment. The paper also describes a
Society Visualiser to demonstrate animations of protocol runs in such systems. A
noteworthy difference with [Artikis et al., 2002] is that we do not explicitly represent
the institutional power of the members and the concept of valid action. “Permitted”
are all social events that do not determine a violation, i.e., all events that are not
explicitly “forbidden” are “allowed”. Being detached from any deontic infrastruc-
ture, our framework can be used for a broader spectrum of application domains,
from intelligent agents to reactive systems.

Huget [2004] proposes to describe goals through a graphical notation. Goals are
composed of plans, which, in their turn, consist of actions. In a Goal Diagram the
relationships among plans and actions are represented by means of nodes and arches.
Goals can involve one or more agents. In PROSOCS, goals can be either goals of
the single agent or of the society. Agent’s goals can be decomposed into subgoals,
in a tree-like hierarchical structure [Kakas et al., 2004]. Society goals are given as
a logical formula, that can contain literals defined in the society’s knowledge base.
The SCIFF proof-procedure processes the goals and raises expectations about the
agent’s behaviour, that can be considered as the atomic actions expected by the
society. Agents can then adopt the society’s expectations as their own goals, or not.
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From this viewpoint, our representation of social goals is more open, as it does not
assume that agents will indeed comply to social expectations and adopt the society’s
goals.

Caire et al. [2004] propose an agent-oriented CASE tool for implementation and
testing of Multi-Agent Systems. The testing framework is divided in two steps: the
agent test and the society test. The agent test verifies the behaviour of the agent
with regard to the system requirements under the responsibility of that agent; the
agents are checked both in their black-box behaviour, and in a white-box checking
of the behaviour of their internal modules. The “agent society testing is a kind of
integration testing”: the successful integration of the different agents is verified. The
testing is performed automatically, without the need for intervention of the user.

Our work is devoted to testing on-the-fly the compliance of agents to social
rules, without having any knowledge on the internals of the agents. We provided a
language, based on logics, to define the interaction protocols, and a proof-procedure,
based on abduction, to check the compliance. Our Society Infrastructure can be
used to check the behaviour of Multi-Agent Systems that are open: members of the
society are not only the ones defined by the MAS designer, but new agents, possibly
malicious, may unpredictably join the society, and interact with the other agents.
As far as their behaviour follows the society’s prescriptions, such interactions may
enrich the society, but they must be checked for conformance in order to avoid
abuses.

Yolum and Singh [2002] apply a variant of Event Calculus [Kowalski and Sergot,
1986] to commitment-based protocol specification. The semantics of messages (i.e.,
their effect on commitments) is described by a set of operations whose semantics,
in turn, is described by predicates on events and fluents; in addition, commitments
can evolve, independently of communicative acts, in relation to events and fluents as
prescribed by a set of postulates. Such a way of specifying protocols is more flexible
than traditional approaches based on action sequences in that it prescribes no initial
and final states or transitions explicitly. It only restricts the agent interaction in that,
at the end of a protocol run, no commitment must be pending; agents with reasoning
capabilities can themselves plan an execution path suitable for their purposes, by
means of an Abductive Event Calculus planner. Our notion of expectation is more
general than that of commitment adopted by Yolum and Singh [2002] or by other
work, such as [Fornara and Colombetti, 2002]: it represents the expectation about
a (past or future) event, without any reference to specific roles of agents (such as a
commitment’s debtor and creditor), and it does not necessarily need to be brought
about by a specific agent.

Finally, several other frameworks in the literature aim at verifying properties
about the behaviour of social agents at design time. Often, such frameworks define
structured hierarchies, roles, and deontic concepts such as norms and obligations
as first class entities. Notably, ISLANDER [Esteva et al., 2002] is a tool for the
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specification and verification of interaction in complex social infrastructures, such
as electronic institutions. ISLANDER allows to analyse situations, called scenes,
and visualise liveness or safeness properties in some specific settings. The kind of
verification involved is static and is used to help designing institutions. Although our
framework could also be used at design time, its main intended use is for on-the-fly
verification of heterogenous and open systems.

6 Conclusions and future work

The study and specification of interaction has since long been a central topic of agent
research. In recent years, considerable effort has been devoted to developing both
methodologies and tools for the verification of agent interaction, and languages and
formalisms for the specification of agent communication languages and interaction
protocols, a domain which seems to be well suited for formal approaches.

The purpose of this work is to propose a formal framework and a methodol-
ogy, encompassing together specification and verification of agent communication
languages and interaction protocols. The methodology is a property-driven cyclic
process interleaving specification and refinement steps with verification steps. In
support to such a process, we propose and describe in this paper a software compo-
nent for the verification of compliance of agent interaction to a specification given in
a logic-based formalism. The component, called SOCS-SI, implements the verifica-
tion procedure using the CHR library of SICStus Prolog, and it features a graphical
user interface and multiple input sources. Its use within the methodology has been
demonstrated with an auction protocol design example. To the best of our knowl-
edge this is the first work in which a fully implemented operational social framework
is presented, aimed at the automatic verification of agent interaction. Building on a
formal ground, our work contributes towards bridging the gap between theory and
implementation of multi-agent systems.

Future work will be devoted to studying properties of agent interaction at run-
time and at design time, in combination with PROSOCS, to refining the interac-
tion design methodology especially by analysing the possible connections between
SOCS-SI and other existing agent-oriented software engineering approaches, and to
interfacing SOCS-SI with other existing agent platforms, such as JADE [Bellifemine
et al., 2000], so to act as a further verification layer. Implementation-wise, it would
be interesting to study the possibility to have the proof-procedure distributed in
several nodes of a networked environment, each devoted to observing only a subset
of the whole interactions occurring within the network. Finally, we would like to
investigate two further applications of SOCS-SI: (i) to support the generation and
management of agent reputation and trust, by discriminating complying agents from
those behaving in unexpected ways, and (ii) as a facilitator for agents entering new
societies, by feeding agents with expectations and therefore providing them with
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knowledge about the society protocols.
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