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Abstract. The design and implementation of effective and efficient algorithms to tackle
large real-world problems is nowadays a very active research field. Metaheuristics are ap-
proximate algorithms which have been proven effective in finding (near-)optimal solutions
in a limited amount of time. In this thesis, we present and describe metaheuristics, focusing
on their applications to the Satisfiability Problem (SAT) and the Maximum Satisfiability
Problem (MAXSAT). Moreover, we discuss the impact of problem structure on algorithm
behavior, by studying how some constraint graph properties affect the search performance.

We first present the state of the art in metaheuristics, underlining the importance of inten-
sification and diversification, and showing that metaheuristics can be conceptually analyzed
on their basis. We then provide an architecture that enables the design and implementa-
tion of metaheuristics in a component-based fashion, moving the focus from the algorithmic
and conceptual viewpoint, to the software engineering approach. The issues of algorithm
design and implementation are considered in the novel application of two metaheuristics to
MAXSAT. We present the development and implementation of Ant Colony Optimization
and of Iterated Local Search metaheuristics.

Aftewards, we capitalize the results achieved in the analysis and design of metaheuristics
by investigating the impact of SAT/MAXSAT problem structure on metaheuristic behavior.
We first define the structure on the basis of the constraint graph associated to the instances.
This approach enables us to extract general properties of the problem structure. In particu-
lar, we study the impact of connectivity among variables on the parallelization of local search.
We find empirical evidence for the presence of an optimal number of parallel local moves that
enables the algorithm to achieve the highest effectiveness. We also discover that the optimal
number of parallel moves is negatively correlated with the connectivity among variables. The
results obtained can give insight into the Criticality and Parallelism phenomenon and into
the behavior of trajectory methods. Finally, we also investigate the hardness of small-world
SAT instances, finding results which may support the conjecture that small-world instances
are among the hardest to solve for both approximate and complete algorithms.

Keywords: Metaheuristics, Constraint Satisfaction Problems, Combinatorial Optimization
Problems, Satisfiability Problem, Mazimum Satisfiability Problem, Graph Theory
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Chapter 1

Introduction

The space between
what’s wrong and right
is where you’ll find me, hiding, waiting for you.

Dave Matthews

In every facet of life, search is characterized by a mixture of strategy, heuristics,
ezxperience and randomness. Especially when we are looking for a solution to a prob-
lem, we apply — more or less consciously — a strategy, we use some general knowledge
about the problem (the heuristic), we try to capitalize and exploit the experience
made in the past and, when we have to choose among alternatives without any bit of
information to guide us, we flip a coin and we hope to be lucky. We found what we
are looking for in the space between our right and wrong suppositions, in the space
between our right and wrong choices.

This thesis concerns algorithms which apply all the four above mentioned ingre-
dients: strategy, heuristics, experience and randomness. These algorithms are com-
monly called metaheuristics, a very meaningful term that suggests the application of
heuristics under the guidance of a general strategy. In this thesis we will consider
the application of metaheuristics to Combinatorial Optimization Problems (COP)
and Constraint Satisfaction Problems (CSP), in particular, the Satisfiability Problem
(SAT) and the Maximum Satisfiability Problem (MAXSAT). Metaheuristics fall into
the category of approximate algorithms, the ones that do not guarantee to find the
optimal solution in bounded time. This characteristic enables them to be usually
very effective in finding quickly optimal or near-optimal solutions for large problem
instances.

Strategy is maybe the most important component in metaheuristics, since it con-
trols the exploration of the search space. The goal of a good strategy is to drive
the search toward promising regions of the search space and to explore them inten-

5



6 CHAPTER 1. INTRODUCTION

sively. Moreover, when an area has been explored, the strategy should move the
search toward other, unexplored regions.

The a priori knowledge on a problem is provided by heuristics. Heuristics are
the first source of information for attacking a problem, as they provide a (usually
myopic) guidance for the search. Heuristics are often problem dependent, thus the
role of metaheuristic strategies is to compose and integrate different heuristics, in
order to efficiently explore the search space and find good solutions.

Metaheuristics not only include strategy and heuristic, but also they exploit the
search history. This is achieved in diverse ways, from the introduction of short term
memories to store the recent moves performed, to the accumulation of statistics on
the visited states. This kind of adaptation is needed to metaheuristics to be effective
in the exploration of the search space. Their search should be “clever” enough to
both intensively explore areas of the search space with high quality solutions, and to
move to unexplored areas of the search space when necessary.

Finally, randomness deserves to be discussed as well, since it has an important role
in search. Randomness comes into play whenever a choice has to be taken without any
guidance from the heuristic, nor the search experience. This happens, for instance,
when we have to break ties. A random move is a cheap and usually effective action.
In the same way as a prey running away from a predator can succeed if it behaves
in an unforeseeable way, so metaheuristics can succeed in finding good solutions by
introducing randomness. Furthermore, many choices are performed in metaheuristics
by following a probability distribution: this enables the search to favor some choices,
not excluding the possibility to follow the alternative ones.

The performance of a metaheuristic is strongly affected by the characteristics of
the problem instance it is tackling. Every empirical scientist dealing with search
algorithms could observe many times that, depending on the class of instances, an al-
gorithm may perform differently. The typical example is that real-world problems are
often more difficult to solve than random generated instances. However, despite the
relevance of this topic, only in the past decade the study of the relations between prob-
lem structure and algorithm behavior has been explicitly and systematically started.
Many are the questions that arise: What is structure? Which features characterize
the difference between random, artificially generated and real-word problems? Which
are the structural properties of a problem that have impact on the search behavior?
How can we exploit them?

This thesis deals with structure in Satisfiability Problems and its impact on meta-
heuristic behavior. We present and discuss the structure modeling of Satisfiability
Problems via constraint graphs and we investigate the influence of graph features
on the behavior of some metaheuristics. The representation of structure as a graph
enables us to extract general properties of the relations among problem variables,
such as their connectivity, distance and clustering. We will see that the connectivity
among variables affects local search, since it has direct impact on the number of par-
allel local moves that enables the algorithm to reach the best solutions. Moreover, we
will discuss experimental results concerning the hardness of instances characterized



by small-world topology of the associated graph!.

This thesis begins with a survey on the state of the art in metaheuristics, from the
algorithmic viewpoint. It first discusses the possible classifications of metaheuristics,
based on key concepts such as the number of solutions managed at each iteration
(single vs. population based), the neighborhood structure, the objective function
and the use of memory to exploit the search history. Then, the main metaheuristic
algorithms are presented in their basic definition, along with variants and improve-
ments. Chap. 2 concludes with an unifying view of metaheuristic concepts based on
intensification (exploitation of the accumulated search experience) and diversification
(exploration of the search space).

Chap. 3 presents an architecture suitable for the design and implementation of
metaheuristics. The architecture is composed of four levels, each concerning a partic-
ular phase of metaheuristics. Moreover, the software components of the architecture
can be seen as software agents and metaheuristics are the result of their coordination.

After a general introduction of metaheuristics, both from algorithmic and engi-
neering perspectives, we consider the application of these algorithms to the Maximum
Satisfiability Problem (MAXSAT) in Chap. 4. In this chapter, we present and dis-
cuss the design of two metaheuristics, namely Ant Colony Optimization and Iterated
Local Search, which have not yet been applied to MAXSAT. Beside methodological
contributions concerning the discussion of design choices, we also achieved very good
results with the second metaheuristic.

The subsequent two chapters of the thesis represent the most investigative and
empirical part of this work. In Chap. 5, we study the impact of connectivity among
variables on the parallelization of local search. Starting from a phenomenon called
Criticality and Parallelism, we deeply investigate the influence of node degree of the
graph associated to the problem instances on the number of parallel local moves that
leads to the best performance. We discover that the optimal number of parallel moves
is negatively correlated with the average connectivity among variables. Furthermore,
by analyzing the frequency of node degree in structured instances, we observe that the
presence of a large number of variables with higher (resp. lower) node degree w.r.t.
the average node degree strongly affects the optimal parallelism. We also face another
related topic in Chap. 6, where we study the hardness of SAT instances characterized
by a small-world topology. Those instances locate in-between random instances and
instances associated to lattice graphs. We observe that small-world instances seem
harder for local search than the ones at the two extremes.

Finally, we conclude with a chapter devoted to an overview of current work, which
goes into the direction of the integration of metaheuristics and complete algorithms.
In particular, we discuss possible ways of combining metaheuristics and tree search.

1 An example of small-world graph is the network defined on the basis of friendship relationships.
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Chapter 2

Metaheuristics: The State of
the Art

2.1 Introduction

Many optimization problems of both practical and theoretical importance concern
the choice of a “best” configuration of a set of variables to achieve some goals. They
seem to divide naturally into two categories: those where solutions are encoded with
real-valued variables, and those where solutions are encoded with discrete variables.
Among the latter ones we find a class of problems called Combinatorial Optimization
Problems (COP). According to [168], in COP, we are looking for an object from a
finite — or possibly countably infinite — set. This object is typically an integer number,
a subset, a permutation, or a graph structure.

Definition 1 A Combinatorial Optimization problem P = (S, f) can be defined
by:

e a set of variables X = {x1,...,2,};

e variable domains D1, ..., Dy;

e constraints among variables;

e an objective function to be minimized* f:D; x ... x D, = Rt;

The set of all possible feasible assignments is
S={s={(z1,v1),...,(xn,vn)} | vi € Dy, s satisfies all the constraints}

S is usually called a search (or solution) space, as each element of the set can be seen
as o condidate solution. To solve a combinatorial optimization problem one has to

1 As maximizing an objective function f is the same as minimizing — f, in this work we will deal,
without loss of generality, with minimization problems.
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10 CHAPTER 2. METAHEURISTICS: THE STATE OF THE ART

find a solution s* € S with minimum objective function value, that is, f(s*) < f(s)
Vs € S. s* is called a globally optimal solution of (S, f) and the set S* C S is called
the set of globally optimal solutions.

Examples of COP are the Traveling Salesman problem (TSP), the Quadratic As-
signment problem (QAP), Timetabling and Scheduling problems. Due to the practical
importance of COP, many algorithms to tackle them have been developed. These al-
gorithms can be classified as either complete or approximate algorithms. Complete
algorithms are guaranteed to find, for every finite size instance of a COP, an opti-
mal solution in bounded time (see [168, 162]). Yet, for COP that are N"P-hard [79],
no polynomial time algorithm exists, assuming that P # A'P. Therefore, complete
methods might need exponential computation time in the worst-case. This often leads
to computation times too high for practical purposes. Thus, the use of approximate
methods to solve COP has received more and more attention in the last 30 years. In
approximate methods we sacrifice the guarantee of finding optimal solutions for the
sake of getting good solutions in a significantly reduced amount of time.

Among the basic approximate methods we usually distinguish between construc-
tive methods and local search methods. Constructive algorithms generate solutions
from scratch by adding components to an initially empty partial solution, until a
solution is complete. They are typically the fastest approximate methods, yet they
often return solutions of inferior quality when compared to local search algorithms.
Local search algorithms start from some initial solution and iteratively try to replace
the current solution by a better solution in an appropriately defined neighborhood of
the current solution, where the neighborhood is formally defined as follows:

Definition 2 A neighborhood structure is a function N : S — 2° that assigns
to every s € S a set of neighbors N'(s) CS. N (s) is called the neighborhood of s.

The introduction of a neighborhood structure enables us to define the concept of
locally minimal solutions.

Definition 3 A locally minimal solution (or local minimum) with respect to a
neighborhood structure N is a solution § such thatV s € N'(8) : f(8) < f(s). We call
§ a strict locally minimal solution if f(3) < f(s) V s € N(8).

In the last 20 years, a new kind of approximate algorithm has emerged which tries
to combine basic heuristic methods in higher level frameworks aimed at efficiently
and effectively exploring a search space. These methods are nowadays commonly
called metaheuristics. The term metaheuristic, first introduced in [87], derives from
the composition of two Greek words. Heuristic derives from the verb heuriskein
(evprokerr) which means “to find”, while the suffix meta means “beyond, in an upper
level”. Before this term was widely adopted, metaheuristics were often called modern
heuristics [181].

This class of algorithms includes?, but is not restricted to, Ant Colony Optimiza-
tion (ACO), Evolutionary Computation (EC) including Genetic Algorithms (GA),

2in alphabetical order




2.1. INTRODUCTION 11

Iterated Local Search (ILS), Simulated Annealing (SA), and Tabu Search (TS). Up
to now there is no commonly accepted definition for the term metaheuristic. Just in
the last few years researchers in the field tried to propose a definition. In the following
we quote some of them:

“A metaheuristic is formally defined as an iterative generation process which
guides a subordinate heuristic by combining intelligently different concepts for ex-
ploring and exploiting the search space, learning strategies are used to structure in-
formation in order to find efficiently near-optimal solutions.” [167].

” A metaheuristic is an iterative master process that guides and modifies the oper-
ations of subordinate heuristics to efficiently produce high-quality solutions. It may
manipulate a complete (or incomplete) single solution or a collection of solutions at
each iteration. The subordinate heuristics may be high (or low) level procedures, or
a simple local search, or just a construction method.” [225].

“Metaheuristics are typically high-level strategies which guide an underlying, more
problem specific heuristic, to increase their performance. The main goal is to avoid
the disadvantages of iterative improvement and, in particular, multiple descent by
allowing the local search to escape from local optima. This is achieved by either al-
lowing worsening moves or generating new starting solutions for the local search in
a more “intelligent” way than just providing random initial solutions. Many of the
methods can be interpreted as introducing a bias such that high quality solutions
are produced quickly. This bias can be of various forms and can be cast as descent
bias (based on the objective function), memory bias (based on previously made de-
cisions) or experience bias (based on prior performance). Many of the metaheuristic
approaches rely on probabilistic decisions made during the search. But, the main
difference to pure random search is that in metaheuristic algorithms randomness is
not used blindly but in an intelligent, biased form.” [209].

“A metaheuristic is a set of concepts that can be used to define heuristic methods
that can be applied to a wide set of different problems. In other words, a metaheuris-
tic can be seen as a general algorithmic framework which can be applied to different
optimization problems with relatively few modifications to make them adapted to a
specific problem.” [145].

Summarizing, we outline fundamental properties which characterize metaheuris-
tics:
o Metaheuristics are strategies that “guide” the search process.

e The goal is to efficiently explore the search space in order to find (near—)optimal
solutions.

e Techniques which constitute metaheuristic algorithms range from simple local
search procedures to complex learning processes.
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e Metaheuristic algorithms are approximate and usually non-deterministic.

e They may incorporate mechanisms to avoid getting trapped in confined areas
of the search space.

e The basic concepts of metaheuristics permit an abstract level description.
e Metaheuristics are not problem-specific.

e Metaheuristics may make use of domain-specific knowledge as heuristic con-
trolled by the upper level strategy.

e Todays more advanced metaheuristics use search experience (embodied in some
form of memory) to guide the search.

In short we could say: Metaheuristics are high level strategies for exploring search
spaces by using different methods. These strategies should be chosen in such a way
to achieve a dynamic balance between diversification and intensification. The term
diversification generally refers to the exploration of the search space, whereas the
term intensification refers to the exploitation of the accumulated search experience.
These terms stem from the Tabu Search field [90] and it is important to clarify that
the terms exploration and exploitation are sometimes used instead, for example in the
Evolutionary Computation field [57], with a more restricted meaning. In fact, the
notions of exploitation and exploration often refer to rather short term strategies tied
to randomness, whereas intensification and diversification also refer to medium and
long term strategies based on the usage of memory. The use of the terms diversification
and intensification in their initial meaning becomes more and more accepted by the
whole field of metaheuristics. The balance between diversification and intensification
as mentioned above is important, on one side to quickly identify regions in the search
space with high quality solutions and on the other side not to waste too much time in
regions of the search space which are either already explored or do not provide high
quality solutions.

The structure of the strategies is highly dependent on the philosophy of the meta-
heuristic itself. There are several different philosophies apparent in the existing meta-
heuristics. Some of them can be seen as “intelligent” extensions of local search al-
gorithms. The goal of this kind of metaheuristic is to escape from local minima to
proceed in the exploration of the search space and to move on to find other hopefully
better local minima. For example, to this category belong Tabu Search, Iterated Lo-
cal Search, Variable Neighborhood Search, GRASP and Simulated Annealing. These
metaheuristics (also called trajectory methods) work on one or diverse neighborhood
structure(s) imposed on the solutions of the search space.

A second category is based on a different philosophy. Algorithms like Ant Colony
Optimization and Evolutionary Computation incorporate a learning component, since
they implicitly or explicitly try to learn correlations between decision variables to iden-
tify high quality areas in the search space. This kind of metaheuristic performs, in a
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sense, a biased sampling of the search space. For instance, in Evolutionary Computa-
tion, this is achieved by recombination of solutions and in Ant Colony Optimization
by sampling the search space according to a probability distribution.

In the following sections we first summarize different classification approaches
of metaheuristics. Sec. 2.3 and Sec. 2.4 are devoted to a description of the most
important metaheuristics nowadays. Section 2.3 describes the most relevant trajectory
methods and in Section 2.4 we outline population-based methods. Finally, we discuss
the use of intensification and diversification in metaheuristics, trying to evidence that
these two concepts enable a uniform view of such algorithms.

For an in-deep survey on metaheuristics we forward the interested reader to [23].

2.2 Classification of metaheuristics

There are different ways to classify and describe metaheuristic algorithms. Depending
on the characteristics selected to differentiate among them, several classifications are
possible, each of them being the result of a specific viewpoint. We briefly summarize
the most important ways of classifying metaheuristics.

Nature-inspired vs. non-nature inspired. Perhaps, the most intuitive way
of classifying metaheuristics is based on the origins of the algorithm. There are
nature-inspired algorithms, like Genetic Algorithms and Ant Algorithms, and non
nature-inspired ones such as Tabu Search and Iterated Local Search. In our opinion
this classification is not very meaningful for the following two reasons. First, many
recent hybrid algorithms do not fit either class (or, in a sense, they fit both at the
same time). Second, it is sometimes difficult to clearly attribute an algorithm to one
of the two classes.

Population-based vs. single point search. Another characteristic that can be
used for the classification of metaheuristics is the number of solutions used at the same
time: Does the algorithm work on a population or on a single solution at any time?
Algorithms working on single solutions are called trajectory methods and encompass
local search-based metaheuristics, like Tabu Search, Iterated Local Search and Vari-
able Neighborhood Search. They all share the property of describing a trajectory in
the search space during the search process. Population-based metaheuristics, on the
contrary, perform search processes which describe the evolution of a set of points in
the search space.

Dynamic vs. static objective function. Metaheuristics can also be classified
according to the way they make use of the objective function. While some algorithms
keep the objective function given in the problem representation “as it is”, some oth-
ers, like Guided Local Search (GLS), modify it during the search. The idea behind
this approach is to escape from local minima by modifying the search landscape. Ac-
cordingly, during the search the objective function is altered by trying to incorporate
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information collected during the search process.

One vs. various neighborhood structures. Most metaheuristic algorithms
work on one single neighborhood structure. In other words, the fitness landscape
topology does not change in the course of the algorithm. Other metaheuristics, such
as Variable Neighborhood Search (VNS), use a set of neighborhood structures which
gives the possibility to diversify the search and tackle the problem swapping between
different fitness landscapes.

Memory usage vs. memory-less methods. A very important feature to
classify metaheuristics is the use they make of the search history, that is, whether
they use memory?® or not. Memory-less algorithms perform a Markov process, as the
information they exclusively use to determine the next action is the current state
of the search process. There are several different ways of making use of memory.
Usually we differentiate between short term and long term memory usages. The first
usually keeps track of recently performed moves, visited solutions or, in general, de-
cisions taken. The second is usually an accumulation of synthetic parameters about
the search. The use of memory is nowadays recognized as one of the fundamental
elements of a powerful metaheuristic.

In the following we describe the most important metaheuristics according to the
single point vs. population-based search classification, which divides metaheuristics
into trajectory methods and population-based methods. This choice is motivated
by the fact that this categorization permits a clearer description of the algorithms.
Moreover, a current trend is the hybridization of methods in the direction of the
integration of single point search algorithms in population-based ones.

In the following two sections we give a detailed description of the algorithms and
their fundamental structures.

2.3 Trajectory Methods

In this section we outline metaheuristics called trajectory methods. The term tra-
jectory methods is used because the search process performed by these methods is
characterized by a trajectory in the search space. This trajectory can be continuous
(i.e., the successor solution belongs to the neighborhood of the incumbent one) or
not. In the following we will refer to a minimization problem P with an objective
function f, a set of feasible solutions S = {s1, s2,...} and a neighborhood structure
N (see Definition 1).

The search process of trajectory methods can be seen as the evolution in (dis-
crete) time of a discrete dynamical system [11, 42]. The algorithm starts from an
initial state (the initial solution) and describes a trajectory in the state space. The

3Here we refer to the use of adaptive memory, in contrast to rather rigid memory, as used for
instance in Branch & Bound.
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system dynamics depends on the strategy used; simple algorithms generate a trajec-
tory composed of two parts: a transient phase followed by an attractor (a fixed point,
a cycle or a complex attractor). Algorithms with advanced strategies generate more
complex trajectories which can not be subdivided in those two phases. The charac-
teristics of the trajectory outline the behavior of the algorithm and its effectiveness
with respect to the instance it is tackling. It is worth underlining that the dynamics
is the result of the combination of algorithm, problem representation and instance. In
fact, the problem representation (including the neighborhood structures) defines the
search landscape; the algorithm describes the strategy used to explore the landscape
and, finally, the actual search space characteristics are defined by the instance to be
solved.

In the next section we will introduce the concept of fitness landscape, which repre-
sents an abstraction of the search space usually adopted in the case of metaheuristics.

2.3.1 Fitness Landscapes

The local search process can be viewed as an exploration of a landscape aimed at
finding a global optimum, or, at least, a “good” local optimum.
A Fitness Landscape is defined by a triple:

L= (S,N,F)
where:
e S is the set of solutions (or states);

e N is the neighborhood function N : S — 2° that defines the neighborhood
structure, by assigning to every s € S a set of states N'(s) C S.

e I is the objective function, in this specific case called fitness function, F: S —
R*.

The Fitness Landscape (hereafter referred to as FL) can be interpreted as a graph
(see Figure 2.1) in which nodes are solutions (with their fitness value) and arcs rep-
resent the neighborhood relation between states.

The neighborhood function A implicitly defines an operator ¢ which takes a state
s1 and transforms it into another state s € N'(s1). Conversely, given an operator ¢,
it is possible to define a neighborhood of a variable s; € S:

Ny(s1) = {s2 € S\ {s1} | s2 can be obtained by one application of ¢ on s}

Usually, the operator is symmetric: if s; is a neighbor of s, then s5 is a neighbor of
s1. In a graph representation (like the one depicted in Figure 2.1) undirected arcs rep-
resent symmetric neighborhood structures. A desirable property of the neighborhood
structure is to allow a path from every pair of nodes (i.e., the neighborhood is strongly
optimally connected) or at least from any node to an optimum (i.e., the neighborhood
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=

Figure 2.1: Example of undirected graph representing a fitness landscape. Each
node is associated with a solution s; and its corresponding fitness value F(s;). Arcs
represent transition between states by means of ¢. Undirected arcs correspond to
symmetric neighborhood structure.

is weakly optimally connected). Nevertheless, there are some exceptions of effective
neighborhood structures which do not enjoy this property [165].

The notion of FL and neighborhood enables to view local search algorithms as
search processes in a graph. The search starts from an initial node and explores the
graph moving from a node to one of its neighbors, until it reaches a termination
condition.

There exists another definition of fitness landscape [122], which is more formal and
general and can be used here as well. However, for the purpose of this contribution it is
sufficient to know that this formal definition can deal with states (nodes of the search
graph) composed of populations of solutions. The key point is the introduction of
multi-sets, which are sets with possible repetitions of elements. A multi-set substitutes
a single solution and the operator transforms a multi-set into another. Furthermore,
the operator is defined as a function ¢ : M(S) x M(S) — [0,1], which assigns a
probability for each possible transition between states. This definition of FL enables
to deal with population heuristics, like genetic algorithms, in the same way as simple
local search algorithms.

There are some important design issues in developing a search algorithm over a
FL: the solution representation, the neighborhood structure and the fitness function.
Furthermore, there are some ways to cope with constraints. For example, it is possible
to map a CSP or a COP into a Free Optimization Problem, where there are not
constraints and infeasible solutions are penalized by the fitness function [56].

It is worth underlining that, given a fitness function, the choice of an operator de-
termines the properties of the landscape. This is the “One Operator One Landscape”
concept, introduced in [122, 123]. The algorithm performance is strongly affected
by the model chosen and, in general, no best choice exists which leads to the best
performance with every algorithm/problem combination. This empirical conjecture
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Figure 2.2: Example of 2-exchange move. The tour can be reconstructed in only one
way.

is theoretically supported by the No Free Lunch Theorem [239].

Example: Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is defined as follows: given an undirected
graph (supposed fully connected), with n nodes and each arc associated with a positive
value, find the Hamiltonian tour with the minimum total cost. From the problem
definition, several models are possible. We shall discuss two among the most common
ones.

Model 1

A solution (i.e., an Hamiltonian tour) can be represented as a sequence of n arcs
(vi,vj), where v; and v; are nodes of the graph. The solution cost is given by the sum
of costs of the arcs in the tour.

Two very successful neighborhood structures which can be introduced in the
above-given representation are called 2-exchange and 3-exchange which lead to 2
and 3-opt improvement algorithms [121]. Both algorithms need to start with a fea-
sible solution. The 2-exchange operator deletes two arcs from the feasible tour and
reconnects the two paths into a tour in the other way (see Figure 2.2). In Figure 2.3
the 3-exchange move is sketched: three arcs are removed and the feasible tour is
then reconstructed by using different arcs (in this case there are six possible ways to
reconstruct the cycle).

The FL generated by the two moves are different, as the defined neighborhoods
differ in size and connectivity properties. 2-exchange neighborhood A5 ., has a
cardinality proportional to n?, while for 3-exchange |[N3_.;| is proportional to n®.
Observe that the solutions defined in this model are feasible for the original problem
as well, because moves preserve the Hamiltonian tour structure.
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Figure 2.3: Example of 3-exchange move. After the removal of three arcs there are
six possible ways to reconstruct the tour. In this figure just one of them is shown.

Model 2
A solution (i.e., an Hamiltonian tour) can be alternatively represented as a sequence of
n values {v1,vs,...,v,}, where v; are nodes of the graph and the solution represents

the sequence of nodes in the tour. For example, {3,5,4,2, 1} represents the tour
3 —=>5—>4—2— 1. The solution cost is given by the sum of costs of the arcs in the
tour.

A simple move operator may be the exchange of any pair nodes in the sequence.
If the initial solution is a feasible tour, the result of a move is guaranteed to be
feasible. Similarly, it is possible to define moves which pick up more than 2 nodes and
exchange them, leading to the definition of neighborhoods Ni_perm. Observe that
these operators define neighborhoods of cardinality proportional to ﬁlk),

It is worth to note that, if the representation chosen {v1,vs,...,v,} was inter-
preted as “the position of node i is v;”, we should introduce an additional constraint
to avoid subtours.

Example: Satisfiability Problem

In this example we discuss a possible representation of the Satisfiability Problem
(SAT) when solved via Local Search.

SAT is defined as follows: given a set of clauses, each of which is the logical
disjunction of k literals (a literal is a variable or its negation), the goal is to find
an assignment to the variables that satisfies all the clauses. For example: the set of
clauses {(z1 V —z2), (-z1 V ~x3), (21 V 23), (z2 V —z3) } is satisfied by the assignments
{(.’L‘l = ].,IL'Q = 0,:173 = 0), ((:L‘l = 1,5[32 = ].,IL'3 = 0))}

Let us suppose to tackle SAT with local search. We model the problem by defining
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as states the variable assignments. In this example we define the move operator as
the flip of one variable. This move operator induces a neighborhood structure such
that the neighbors of a state s are all the states at Hamming distance equal to 1 from
s (this is the definition of neighborhood most often adopted in SAT problems). The
SAT problem does not involve any optimization criteria since any solution satisfying
all the constraints is accepted. However, solving SAT with LS, we need to introduce
in the model an objective function which evaluates the assignments with respect to
their “closeness” to the satisfying ones. A typical objective function is the number of
satisfied clauses, but other choices are possible*. Thus, feasible solution for the SAT
problem are mapped in optimal solutions in the model.

In the next sections, we will first describe the basic local search algorithms and then
we will survey more complex strategies, ending with algorithms that define general
strategies and can include other trajectory methods as components.

2.3.2 Basic Local Search: Iterative Improvement

The basic local search is usually called iterative improvement, since each move is
only performed if the solution it produces is better than the current solution. The
algorithm stops as soon as it finds a local minimum. The high level algorithm is
sketched in Algorithm 1.

Algorithm 1 ITterative Improvement
s < GeneratelnitialSolution()
repeat

s < Improve(s,N (s))
until no improvement is possible

The function I'mprove(s, N'(s)) can be in the extremes either a first improvement,
or a best improvement function, or any intermediate option. The former scans the
neighborhood N (s) and chooses the first solution that improves the objective function,
the latter exhaustively explores the neighborhood and returns one of the solutions with
the lowest objective function value. Both methods stop at local minima, therefore
their performance strongly depends on the definition of S, f and N. In general,
the termination condition of metaheuristic algorithms is more complex than simply
reaching a local minimum. Indeed, possible termination conditions include: maximum
CPU time, a maximum number of iterations, a solution s with f(s) less than a
predefined threshold value is found, or the maximum number of iterations without
improvements is reached.

The performance of iterative improvement procedures on COP is usually quite
unsatisfactory, therefore several techniques have been developed to prevent algorithms
from getting trapped in local minima or to escape from them. In the following we
describe the most important and successful ones.

4See, for example, non—oblivious functions for MAXSAT problems in [14].



20 CHAPTER 2. METAHEURISTICS: THE STATE OF THE ART

2.3.3 Simulated Annealing

Simulated Annealing (SA) is commonly said to be the oldest among the metaheuris-
tics and surely one of the first algorithms that had an explicit strategy to avoid local
minima. The origins of the algorithm are in statistical mechanics (Metropolis algo-
rithm) and it was first presented as a search algorithm for COP in [132] and [30]. The
fundamental idea is to allow moves resulting in solutions of worse quality than the
current solution (uphill moves) in order to escape from local minima. The probability
of doing such a move is decreased during the search. The high level algorithm is
described in Algorithm 2.

Algorithm 2 Simulated Annealing (SA)

s < GeneratelnitialSolution()
T+ Ty
while termination conditions not met do
s" + PickAtRandom(N (s))
if f(s') < f(s) then
s < s'{s replaces s}
else
Accept s’ as new solution with probability p(T, s', s)
end if
Update(T")

end while

The algorithm starts by generating an initial solution (either randomly or heuris-
tically constructed) and by initializing the so-called temperature parameter 7. Then
this cycle is repeated until the termination condition is reached. The instructions
in the inner cycle are very simple: a solution s’ € N (s) is randomly sampled and
it is accepted as new current solution depending on f(s), f(s') and T. s’ replaces
s if f(s') < f(s) or, in case f(s') > f(s), with a probability which is a function of
T and f(s') — f(s). The probability is generally computed following the Boltzmann
distribution exp(—w).

The temperature T is decreased® during the search process, thus at the begin-
ning of the search the probability of accepting uphill moves is high and it gradually
decreases, converging to a simple iterative improvement algorithm. This process is
analogous to the annealing process of metals and glass, which assume a low energy
configuration when cooled with an appropriate cooling schedule. Regarding the search
process, this means that the algorithm is the result of two combined strategies: ran-
dom walk and iterative improvement. In the first phase of the search, the bias toward
improvements is low and it permits the exploration of the search space; this erratic
component is slowly decreased thus leading the search to converge to a (local) min-
imum. The probability of accepting uphill moves is controlled by two factors: the

5T is not necessarily decreased in a monotonic fashion. Elaborate cooling schemes also incorporate
an occasional increase of the temperature.
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difference of the objective functions and the temperature. On the one hand, at fixed
temperature, the higher the difference f(s') — f(s), the lower the probability to accept
a move from s to s’. On the other hand, the higher T, the higher the probability of
uphill moves.

The choice of an appropriate cooling schedule is crucial for the performance of the
algorithm. The cooling schedule defines the value of T' at each iteration k, Tj41 =
Q(Ty, k), where Q(T}, k) is a function of the temperature and of the iteration number.
Theoretical results on non-homogeneous Markov chains [1] state that under particular
conditions on the cooling schedule, the algorithm converges in probability to a global
minimum for £ — oo. More precisely:

AdreR st klim Prob[global minimum found after & steps] =1
—00

. - r
iff ;exp(T—k) =00

A particular cooling schedule that fulfills the hypothesis for the convergence is the one
that follows a logarithmic law: Tjq1 = m (where kg is a constant). Unfortu-
nately, cooling schedules which guarantee the convergence to a global optimum are not
feasible in applications, because they are too slow for practical purposes. Therefore,
faster cooling schedules are adopted in applications. One of the most used follows a
geometric law: Ty41 = aTy, where a €]0,1[, which corresponds to an exponential
decay of the temperature.

The cooling rule can vary during the search, with the aim of tuning the balance
between diversification and intensification. For example, at the beginning of the
search, 7' might be constant or linearly decreasing, in order to sample the search space;
then, T' might follow a rule such as the geometric one, to converge to a local minimum
at the end of the search. More successful variants are non-monotonic cooling (e.g., see
[166, 138]). Non-monotonic cooling schedules are characterized by alternating phases
of cooling and reheating, thus providing an oscillating balance between diversification
and intensification.

The cooling schedule and the initial temperature should be adapted to the par-
ticular problem instance, since the cost of escaping from local minima depends on
the structure of the search landscape. A simple way of empirically determining the
starting temperature Ty is to initially sample the search space with a random walk to
roughly evaluate the average and the variance of objective function values. But also
more elaborate schemes can be implemented [119].

The dynamic process described by SA is a Markov chain [58], as it follows a
trajectory in the state space in which the successor state is chosen depending only on
the incumbent one. Therefore this process of basic SA is memory-less. However, the
use of memory can be beneficial for SA approaches (see for example [31]).

SA has been applied to several COP, such as the Quadratic Assignment Problem
(QAP) [34] and the Job Shop Scheduling (JSS) problem [222]. References to other
applications can be found in [2, 119, 64]. SA is nowadays used as a component in
metaheuristics, rather than applied as stand-alone search algorithm. Variants of SA
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called Threshold Accepting and The Great Deluge Algorithm were presented by Dueck
et al. [54, 53].

2.3.4 Tabu Search

Tabu Search (TS) is among the most cited and used metaheuristics for COP. TS
basic ideas were first introduced in [87], built on earlier ideas formulated in [86]%. A
description of the method and its concepts can be found in [90]. TS explicitly uses
the history of the search, both to avoid local minima and to implement an explorative
strategy. We will first describe a simple version of TS, to introduce the basic concepts.
Then, we will explain a more applicable algorithm and finally we will discuss some
improvements.

Algorithm 8 Simple Tabu Search (TS)

s < GeneratelnitialSolution()

TabuList + ()

while termination conditions not met do
s < ChooseBestOf(s,N (s) \ T'abuList)
Update(T'abuList)

end while

The simple TS algorithm (see Algorithm 3) applies a best improvement local search
as basic ingredient and uses a short term memory to escape from local minima and to
avoid cycles. The short term memory is implemented as a tabu list that keeps track of
the most recently visited solutions and forbids moves toward them. The neighborhood
of the current solution is thus restricted to the solutions that do not belong to the
tabu list. In the following we will refer to this set as allowed set. The new solution
is chosen in the allowed set, which is exhaustively explored, then it is added to the
tabu list and one of the solutions in the list is discarded (usually in a FIFO order).
Due to this dynamic restriction of allowed solutions in a neighborhood, TS can be
considered as a dynamic neighborhood search technique [209]. The algorithm stops
when the termination condition is met. It might also terminate if the allowed set is
empty, that is, if all the solutions in N(s) are forbidden by the tabu list”.

The use of a tabu list prevents from returning to recently visited solutions, there-
fore it prevents from endless cycling® and forces the search to accept even uphill
moves. The length [ of the tabu list (tabutenure) controls the memory of the search
process. With small tabu tenures the search will concentrate on small areas of the
search space. On the opposite, a large tabu tenure forces the search process to ex-
plore larger regions, because it forbids revisiting a higher number of solutions. The

6Related ideas were labeled steepest ascent/mildest descent method in [101].

7Other escaping strategies are possible, to avoid to stop when the allowed set is empty. For
instance, one can choose the least recently visited solution, even if it is tabu.

8Cycles of higher period are possible, since the tabu list has a finite length [ which is smaller than
the cardinality of the search space.
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tabu tenure can be varied during the search, leading to more robust algorithms. An
example can be found in [215], where the tabu tenure is periodically reinitialized at
random in the interval [lmin, lmaz). A more advanced use of dynamic tabu tenure
is presented in [16, 13], where the tabu tenure is increased if there is evidence for
repetitions of solutions (thus a higher diversification is needed), while it is decreased
if there are no improvements (thus intensification should be boosted). More advanced
ways to create dynamic tabu tenure are described in [88].

The implementation of short term memory as a list of visited solution is not
practical, because managing a list of solutions is highly inefficient. Therefore, instead
of the solutions themselves, solution attributes are stored®. Attributes are usually
components of solutions, moves, or differences between two solutions. Since more
than one attribute can be considered, a tabu list is introduced for each of them.
The set of attributes and related tabu lists define the tabu conditions which are
used to filter the neighborhood of a solution and generate the allowed set. Storing
moves instead of complete solutions is much more efficient, but it introduces a loss
of information, as forbidding a move means assigning the tabu status to probably
more than one solution. Thus, it is possible that unvisited solutions of good quality
are excluded from the allowed set. To overcome this problem, aspiration criteria are
defined which allow to include a solution in the allowed set even if it is forbidden
by tabu conditions. Aspiration criteria define the aspiration conditions that are used
to construct the allowed set. The most commonly used aspiration criterion selects
solutions which are better than the current best one. The complete algorithm, as
described above, is reported in Algorithm 4.

Algorithm 4 Tabu Search (TS)

s < GeneratelnitialSolution()

InitializeTabulLists(T' L4, ...,TL,)

k<0

while termination conditions not met do
AllowedSet(s, k) + {z € N(s) | no tabu condition is violated or at least one
aspiration condition is satisfied}
s + ChooseBestOf(s,AllowedSet(s, k))
UpdateTabuListsAndAspirationConditions()
k<—k+1

end while

Tabu lists are only one of the possible ways of taking advantage of the history of the
search. They are usually identified with the usage of short term memory. Information
collected during the overall search process can also be very useful, especially for a
strategic guidance of the algorithm. This kind of long term memory is usually added to
TS by referring to four principles: recency, frequency, quality and influence. Recency-
based memory records for each solution (or attribute) the most recent iteration it was

9n addition to storing attributes, some longer term TS strategies also keep complete solutions
(e.g., elite solutions) in the memory.
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involved in. Orthogonally, frequency-based memory keeps track of how many times
each solution (attribute) has been visited. This information identifies the regions
(or the subsets) of the solution space where the search was confined, or where it
stayed for a high number of iterations. This kind of information about the past is
usually exploited to diversify the search. The third principle, quality, is a guidance
to learn and extract information from the search history in order to identify good
solution components. This information can be usefully integrated in the solution
construction. Other metaheuristics (e.g., Ant Colony Optimization) explicitly use
this principle to learn about good combinations of solution components. Finally,
influence is a property regarding choices made during the search and can be used to
indicate which choices have shown to be the most critical. In general, the TS field is
a rich source of ideas. Many of these ideas and strategies have been and are currently
adopted by other metaheuristics.

TS has been applied to most COP; examples for successful applications are the
Robust Tabu Search to the QAP [215], the Reactive Tabu Search to the MAXSAT
problem [13], and to assignment problems [39]. TS approaches dominates the Job
Shop Scheduling (JSS) problem area (see for example [165]) and the Vehicle Routing
(VR) area [81]. Further current applications can be found at [214].

2.3.5 Explorative Local Search methods

In this section we present more recent trajectory methods. These are the Greedy
Randomized Adaptive Search Procedure (GRASP), Variable Neighborhood Search
(VNS), Guided Local Search (GLS) and Iterated Local Search (ILS).

GRASP

The Greedy Randomized Adaptive Search Procedure (GRASP), see [59, 173], is a
simple algorithm that combines constructive heuristics and local search. Its struc-
ture is sketched in Algorithm 5. GRASP is an iterative procedure, composed of two
phases: solution construction and solution improvement. The best found solution is
returned at the end of the iterations, when the termination condition is reached.

Algorithm 5 Greedy Randomized Adaptive Search Procedure (GRASP)

while termination conditions not met do
s < ConstructGreedyRandomizedSolution(){see Algorithm 6}
ApplyLocalSearch(s)
MemorizeBestFoundSolution()

end while

The solution construction algorithm (see Algorithm 6) is characterized by two
main ingredients: a dynamic constructive heuristic and randomization. Assuming
that a solution s consists of a subset of a set of solution components (elements), the
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Algorithm 6 Greedy randomized solution construction

s < ({s denotes a partial solution in this case}
a + CandidatelListLength() {definition of the RCL length}
while solution not complete do
RCL, + GenerateRestrictedCandidateList(s)
x + SelectElementAtRandom(RCL,)
s« sU{xz}
UpdateGreedyFunction(s){update the heuristic values (see text below)}
end while

solution is constructed one element at a time by randomly picking it from a candidate
list. The elements are ranked by means of a heuristic criterion that gives them a
score as a function of the (myopic) benefit if inserted in the solution. The candidate
list, called Restricted Candidate List (RCL), is composed of the first a elements.
The heuristic values are updated at each step, thus the score of elements changes
during the construction phase, as the choice of an element might decrease/increase the
desirability of another not yet inserted element. This constructive heuristic is called
dynamic, in contrast to the static one which assigns a score to elements only before
starting the construction. For instance, a static heuristic for TSP is based on the arc
cost: the lower the cost, the higher its desirability. An example of a dynamic heuristic
is cheapest insertion, where the desirability of an element is evaluated depending on
the current partial solution.

The length « of the candidate list controls the heuristic bias. In the extreme case
of @ = 1 the best element would be added, thus the construction would be fully greedy.
On the opposite, for & = n the construction would be completely random (indeed,
the choice of an element from the candidate list is done at random). Therefore, « is
a critical parameter which influences the sampling of the search space. In [173] the
most important schemes to define « are listed. The simplest scheme is, trivially, to
keep a constant; it can also be changed every iteration, either randomly or by means
of an adaptive scheme.

The second phase of the algorithm is a local search process. This can be imple-
mented with a basic local search algorithm such as iterative improvement, or with
more advanced techniques, such as SA and TS. GRASP can be effective if two condi-
tions hold:

e the constructed solutions sample the most promising regions in the search space.

e the solutions constructed by the constructive heuristic belong to basins of at-
traction of different locally minimal solutions.

The first condition can be met by the choice of a good constructive heuristic and an
appropriate length of the candidate list, whereas the second condition can be met by
choosing the constructive heuristic and the local search in a way such that they fit
well.
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As can be noted by observing its basic structure, GRASP does not use the history
of the search!?, since the only memory it needs is to store the current best solution.
This is one of the reasons why GRASP is often outperformed by other metaheuristics.
However, due to its simplicity, it is generally very fast and it is able to produce quite
good solutions in a very short amount of computation time. Furthermore, it can
be successfully integrated into other search techniques. Among the applications of
GRASP we mention the JSS problem [20], the graph planarization problem [188] and
assignment problems [174]. A detailed and annotated bibliography references many
more applications [62].

Variable Neighborhood Search

Variable Neighborhood Search (VNS) [104, 105] is a metaheuristic that explicitly
applies a strategy based on dynamically changing neighborhood structures. The al-
gorithm is very general and many degrees of freedom exist for designing variants and
particular instantiations'!.

Algorithm 7 Variable Neighborhood Search (VNS)

Select a set of neighborhood structures Ny, k = 1,.. ., knas
s + GeneratelnitialSolution()
while termination conditions not met do
k+1
while k < k0, do {Inner Loop}
s' + PickAtRandom (N} (s)){Shaking phase}
s < LocalSearch(s')
if f(s") < f(s) then
s« s
k+1
else
k+—k+1
end if
end while
end while

At the initialization step, a set of neighborhood structures has to be defined. These
neighborhoods can be arbitrarily chosen, but often a sequence |[Ni| < [Ma] < ... <
| NVk,.a | Of neighborhoods with increasing cardinality is defined!?. Then an initial
solution is generated, the neighborhood index is initialized and the algorithm iterates

10Some extensions in this direction are cited in [173], and an example for a metaheuristic method
using an adaptive greedy procedure depending on search history is Squeaky Wheel Optimization
(SWO) [124].

' The variants described in the following are also described in [104, 105].

12Tn principle they could be one included in the other, N1 C N2 C ... C Ny, ... Nevertheless,
such a sequence might produce an inefficient search, because a large number of solutions could be
revisited.
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Figure 2.4: Two search landscapes defined by two different neighborhoods: the best
improvement local search stops at s* in the first, while it proceeds till a better opti-
mum s* in the second.

until a stopping condition is met (Algorithm 7). VNS’ main cycle is composed of three
phases: shaking, local search and move. In the shaking phase a solution s’ in the k-th
neighborhood of the current solution s is randomly selected. Then, s’ becomes the
local search starting point. The local search can use any neighborhood structure and
it is not restricted to the set of neighborhood structures Ni, k = 1,--- , kmas. At
the end of the local search process (terminated as soon as a predefined termination
condition is verified) the new solution s” is compared with s and, if it is better, it
replaces s and the algorithm starts again with & = 1. Otherwise, k is incremented
and a new shaking phase starts using a different neighborhood.

The objective of the shaking phase is to perturb the solution so as to provide
a good starting point for the local search. The starting point should belong to the
basin of attraction of a different local minimum than the current one, but should not
be “too far” from s, otherwise the algorithm would degenerate into a simple random
multi-start. Moreover, choosing s’ in the neighborhood of the current best solution is
likely to produce a solution that maintains some good features of the current one.

The process of changing neighborhoods in case of no improvements corresponds
to a diversification of the search. In particular the choice of neighborhoods of increas-
ing cardinality yields a progressive diversification. The effectiveness of this dynamic
neighborhood strategy can be explained by the fact that a “bad” place on the search
landscape given by one neighborhood could be a “good” place on the search landscape
given by another neighborhood!®. Moreover, a solution that is locally optimal with
respect to a neighborhood is probably not locally optimal with respect to another
neighborhood. These concepts are known as “One Operator, One Landscape” and
explained in [122, 123]. The core idea is that the neighborhood structure determines
the topological properties of the search landscape and, for each neighborhood, one
landscape is defined. The properties of a landscape are in general different from those
of other landscapes, therefore the search strategy performs differently on them (see
an example in Figure 2.4).

This property is directly exploited by a local search called Variable Neighborhood

13 A “good” place in the search space is an area from which a good local minimum can be reached.
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Descent (VND). In VND a best improvement local search (see section 2.2.1) is applied,
and, in case a local minimum is found, the search proceeds with another neighborhood
structure. The VND algorithm can be obtained by substituting the inner loop of the
VNS algorithm (Algorithm 7) with the following pseudo-code:

s' « ChooseBestOf(Ny(s))

if f(s') < f(s) then {a better solution is found in the neighborhood}
S5

else {s is a local minimum}
k—k+1

end if

As can be observed from the description given above, the choice of the neighbor-
hood structures is the critical point of VNS and VND. The neighborhoods chosen
should show and represent “different” properties and characteristics of the search
space, that is, the neighborhood structures should give different abstractions of the
search space. A variant of VNS is obtained by selecting the neighborhoods in such a
way as to produce a problem decomposition (the algorithm is called Variable Neigh-
borhood Decomposition Search — VNDS). VNDS follows the usual VNS scheme, but
the neighborhood structures and the local search are defined on sub-problems. For
each solution, all attributes (usually variables) are kept fixed except for k of them.
For each k a neighborhood structure N} is defined. Local search only regards changes
on the variables belonging to the sub-problem it is applied to. The inner cycle of
VNDS is the following;:

s’ « PickAtRandom(N(s)) {s and s’ differ in a set of k attributes}
s" + LocalSearch(s’,Attributes) {only moves involving the k attributes are allowed}
if f(s") < f(s) then
s« s"
k+1
else
k—k+1
end if

The decision whether to perform a move can be varied as well. The acceptance
criterion based on improvements is strongly steepest descent-oriented and it might not
be suited to effectively explore the search space. For example, when local minima are
clustered, VNS can quickly find the best optimum in a cluster, but it has no guidance
to leave that cluster and find another one. Skewed VNS (SVNS) extends VNS by
providing a more flexible acceptance criterion that takes also into account the distance
from the current solution'*. The new acceptance criterion is the following: besides
always accepting improvements, worse solutions can be accepted if they are distant
from the current one less than a value ap(s,s”). The function p(s,s”) measures the
distance between s and s” and « is a parameter that weights the importance of the
distance between the two solutions in the acceptance criterion. The inner cycle of
SVNS can be sketched as follows:

14 A distance measure between solutions has thus to be formally defined.
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objective function

Solution space

Figure 2.5: Basic GLS idea: escaping from a valley in the landscape by increasing the
objective function value of its solutions.

if f(s')—ap(s,s") < f(s) then
PR
k+1

else
k+—k+1

end if

VNS, and its variants, have been successfully applied to graph based COP such
as the p-Median problem [103], the degree constrained minimum spanning tree prob-
lem [189], the Steiner tree problem [228] and the k-Cardinality Tree (KCT) prob-
lem [155]. References to more applications can be found in [105].

Guided Local Search

Tabu Search and Variable Neighborhood Search explicitly deal with dynamic neigh-
borhoods with the aim of efficiently and effectively exploring the search space. A
different approach for guiding the search is to dynamically change the objective func-
tion. Among the most general methods that use this approach is Guided Local Search
(GLS) [227, 226].

The basic GLS principle is to help the search to move out gradually from lo-
cal optima by changing the search landscape. In GLS the set of solutions and the
neighborhood structure are kept fixed, while the objective function f is dynamically
changed with the aim of making the current local optimum “less desirable”. A picto-
rial description of this idea is given in Figure 2.5.

The mechanism used by GLS is based on solution features, which may be any kind
of properties or characteristics that can be used to discriminate between solutions. For
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example, solution features in the TSP could be arcs between pairs of cities, while in
the MAXSAT problem they could be the number of unsatisfied clauses. An indicator
function I;(s) indicates whether the feature ¢ is present in solution s:

Ii(s) = 1 : if feature ¢ is present in solution s
7771 0 ¢ otherwise .

The objective function f is modified to yield a new objective function f' by adding
a term that depends on the m features:

F(5) = f(s) + AT pi - Ii(s),

where p; are called penalty parameters and X is called the regularization parameter.
The penalty parameters weight the importance of the features: the higher p;, the
higher the importance of feature i, thus the higher the cost of having that feature
in the solution. The regularization parameter balances the relevance of features with
respect to the original objective function.

The algorithm (see Algorithm 8) behaves as follows: it starts from an initial
solution and applies a local search method until a local minimum is reached. Then the
array p = (p1,.-.,Pm) of penalties is updated by incrementing some of the penalties
and the local search is started again. The penalized features are those that have the
maximum wutility:

Util(s,i) = Ii(s) - 715,
where ¢; are costs assigned to every feature ¢ giving a heuristic evaluation of the
relative importance of features with respect to others. The higher the cost, the higher
the utility of features. Nevertheless, the cost is scaled by the penalty parameter
to prevent the algorithm from being totally biased toward the cost and to make it
sensitive to the search history.

Algorithm 8 Guided Local Search (GLS)

s < GeneratelnitialSolution()
while termination conditions not met do
s « LocalSearch(s, f')
for all feature 4 with maximum utility Util(s,4) do
pi+—pi+1
end for
Update(f',p){where p is the penalty vector}
end while

The penalties update procedure can be modified by adding a multiplicative rule
to the simple incrementing rule (that is applied every iteration). The multiplicative
rule has the form: p; < p; - @, where @ €]0,1[. This rule is applied with a lower
frequency than the incrementing one (for example every few hundreds of iterations)
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with the aim to decay the weights of penalized features so as to prevent the landscape
from becoming too rugged. It is important to note that the penalties update rules
are often very sensitive to the problem instance.

GLS has been successfully applied to the weighted MAXSAT [152], the VR prob-
lem [131], the TSP and the QAP [227].

Iterated Local Search

We conclude this presentation of explorative strategies with Iterated Local Search
(ILS), the most general scheme among the explorative strategies. On the one hand, its
generality makes it a framework for other metaheuristics (such as VNS); on the other
hand, other metaheuristics can be easily included in it as sub-components. ILS is a
simple but powerful metaheuristic algorithm [209, 208, 137, 136, 141]. It applies local
search to an initial solution until it finds a local optimum; then it perturbs the solution
and it restarts local search. The importance of the perturbation is obvious: too small
a perturbation might not enable the system to escape from the basin of attraction of
the local optimum just found. On the other side, too strong a perturbation would
make the algorithm similar to a random restart local search.

A local search is effective if it is able to find good local minima, that is, if it can
find the basin of attraction!'® of those states. When the search space is wide and/or
when the basins of attraction of good local optima are small, a simple multi-start
algorithm is almost useless. An effective search could be designed as a trajectory only
in the set of local optima S*, instead of in the set S of all the states. Unfortunately,
the only way of introducing a neighborhood structure in S* would be constructing
(or at least, sampling) the basin of attraction of local optima involved in the search.
As this is not tractable in practice, a trajectory along local optima si,s3,...,s; can
be performed without explicitly introducing a neighborhood structure, by applying
the following scheme:

1. Execute local search (LS) from an initial state s until a local optimum s* is
found.

2. Perturb s* and obtain s'.
3. Execute LS from s’ until it finds a local optimum s* .
4. On the basis of an acceptance criterion decide whether to set s* s

5. Goto step 2.

The (ideal) task of the perturbation on s* is to produce a starting point for local
search such that it ends in a local optimum different from s*, but closer than a
local optimum reachable with a random restart. The acceptance criterion acts as a
counterbalance, as it filters and gives feedbacks to the perturbation action, depending

15The basin of attraction size of a point s (in a finite space), is defined as the fraction of initial
states of trajectories which converge to point s.
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Figure 2.6: A desirable ILS step: the local optimum s* is perturbed, then LS is
applied and a new local minimum is found.

on the characteristics of the new local optimum. A high level description of ILS as it
appears in [137] is reported in Algorithm 9. Figure 2.6 shows a possible (lucky) ILS
step.

Algorithm 9 Iterated Local Search (ILS)

so « GeneratelnitialSolution()
s* « LocalSearch(sg)
while termination conditions not met do
s' « Perturbation(s*, history)
s* « LocalSearch(s)
s* < ApplyAcceptanceCriterion(s*, s* , history)
end while

The design of ILS algorithms has several degrees of freedom in the choice of the
initial solution, perturbation and acceptance criteria. A key role is played by the
history of the search which can be exploited both as short and long term memory.

The construction of initial solutions should be fast (computationally not expen-
sive), and initial solutions should be a good starting point for local search. The fastest
way of producing an initial solution is to generate it at random; however, this is the
easiest way for problems where every possible assignment is a feasible solution, whilst
in other cases the construction of a feasible solution requires also constraint check-
ing. Constructive methods, guided by heuristics, can also be adopted. It is worth
underlining that an initial solution is considered a good starting point depending on
the particular LS applied and on the problem structure, thus the algorithm designer’s
goal is to find a trade-off between speed and quality of solutions.
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The perturbation is usually non-deterministic, to avoid cycling. Its most impor-
tant characteristic is the strength, roughly defined as the amount of changes made
on the current solution. The strength can be either fixed or variable. In the first
case, the distance between s* and s’ is kept constant, independently of the problem
size. However, a dynamic strength is in general more effective, since it has been ex-
perimentally found that, in most of the problems, the bigger the problem size, the
larger should be the strength. More sophisticated schemes are possible; for example,
the strength can be adaptive: it increases when more diversification is needed and it
decreases when intensification seems preferable. VNS and its variants belong to this
category. A second choice is the mechanism to perform perturbations. This may be a
random mechanism, or the perturbation may be produced by a (semi—)deterministic
method (e.g., a LS different from the one used in the main algorithm).

The third important component is the acceptance criterion. There are two extreme
cases: accept the new local optimum only in case of improvement or always accept
the new state. In-between, there are several possibilities. For example, it is possible
to adopt a kind of annealing schedule: accept all the improving new local optima
and accept also the non-improving ones with a probability that is a function of the
temperature 7" and the difference of objective function values. In formulas:

1 if f(s¥) < f(s*)

Prob[Accept(s*, s', history)] = { (_f(s*')T_f(s*)

exp otherwise

The cooling schedule can be either monotonic (non-increasing in time) or non-
monotonic (adapted to tune the balance between diversification and intensification).
The non-monotonic schedule is particularly effective if it exploits the history of the
search, in a way similar to the Reactive Tabu Search [215] mentioned at the end of
the section about Tabu Search. When intensification seems no longer effective, a
diversification phase is needed and the temperature is increased.

Examples for successful applications of ILS are to the TSP [140, 121], to the
QAP [137], and to the Single Machine Total Weighted Tardiness (SMTWT) prob-
lem [40]. References to other applications can be found in [137].

2.4 Population-based methods

Population-based methods deal with a set (a population) of solutions rather than with
a single solution. Since they deal with a population of solutions, population-based
algorithms provide a natural, intrinsic way for the exploration of the search space.
Yet, the final performance depends strongly on the way the population is manip-
ulated. The most studied population-based methods in combinatorial optimization
are Evolutionary Computation (EC) and Ant Colony Optimization (ACO). In EC
algorithms a population of individuals is modified by recombination and mutation
operators, and in ACO a colony of artificial ants is used to construct solutions guided
by the pheromone trails and heuristic information.
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2.4.1 Evolutionary Computation (EC)

Evolutionary Computation (EC) algorithms are inspired by nature’s capability to
evolve living beings well adapted to their environment. EC algorithms can be suc-
cinctly characterized as computational models of evolutionary processes. In every
iteration a number of operators is applied to the individuals of the current popula-
tion to generate the individuals of the population of the next generation (iteration).
Usually, EC algorithms use operators called recombination or crossover to recombine
two or more individuals to produce new individuals. They also use mutation or mod-
ification operators which cause a self-adaptation of individuals. The driving force in
evolutionary algorithms is the selection of individuals based on their fitness (this can
be the value of an objective function or the result of a simulation experiment, or some
other kind of quality measure).

Individuals with higher fitness have higher probability to be chosen as members of
the population of the next iteration (or as parents for the generation of new individ-
uals). This corresponds to the principle of survival of the fittest in natural evolution.
It is the capability of nature to adapt itself to a changing environment, which gave
the inspiration for EC algorithms.

EC algorithms heve been proposed in many variants over the years. They ba-
sically fall into three different categories, which have been developed independently
from each other: Evolutionary Programming (EP) [69, 70], Evolutionary Strategies
(ES) [180] and Genetic Algorithms [114] (see also [92], [154], [183] and [224] for fur-
ther references). EP arose from the desire to generate machine intelligence. While
EP originally was proposed to operate on discrete representations of finite state ma-
chines, most of the present variants are used for continuous optimization problems.
The latter also holds for most present variants of ES, whereas GAs are mainly ap-
plied to solve combinatorial optimization problems. Overviews and surveys about EC
methods can be found [7], [67], [204], [148] and [28].

In the following we concentrate on a “combinatorial optimization”-oriented intro-
duction to EC algorithms. In this perspective, we follow an overview by Hertz et
al. [109], which gives, in our opinion, a good overview of the different components of
EC algorithms and of the possibilities to define them. Algorithm 10 shows the basic
structure of every EC algorithm.

Algorithm 10 Evolutionary Computation
P + GeneratelnitialPopulation()
Evaluate(P)
while termination conditions not met do

P’ «+ Recombine(P)

P" «+ Mutate(P')

Evaluate(P")

P + Select(P" U P)
end while
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In this algorithm, P denotes the population of individuals. A population of off-
spring is generated by recombination and mutation operators and the individuals for
the next population are selected from the union of the old population and the offspring
population. The main features of an EC algorithm are outlined in the following.

Description of the individuals: EC algorithms handle populations of individ-
uals. These individuals are not necessarily solutions of the considered problem. They
may be partial solutions, or sets of solutions, or any object which can be transformed
into one or more solutions in a structured way. Most commonly used in combinatorial
optimization is the representation of solutions as bit-strings or as permutations of n
integer numbers. Tree-structures or other complex structures are also possible. In
the context of Genetic Algorithms, individuals are called genotypes, whereas the so-
lutions that are encoded by individuals are called phenotypes. This is to differentiate
between the representation of solutions and solutions themselves. The choice of an
appropriate representation is crucial for the success of an EC algorithm. Holland’s
schema analysis [114] and Radcliffe’s generalization to formae [177] are examples of
how theory can help to guide representation choices.

Evolution process: In each iteration it has to be decided which individuals will
enter the population of the next iteration. This is done by a selection scheme. The
strategy of only choosing among the offspring as individuals for the next population is
called generational replacement. On the contrary, in the steady state evolution process,
it is possible to transfer individuals of the current population into the next population.

Most EC algorithms work with populations of fixed size keeping at least the best
individual always in the current population. It is also possible to have a variable
population size. In case of a continuously shrinking population size, the situation
where only one individual is left in the population (or no crossover partners can be
found for any member of the population) might be one of the stopping conditions of
the algorithm.

Neighborhood structure: A neighborhood function Ng¢ : Z — 2% on the set of
individuals 7 assigns to every individual ¢ € Z a set of individuals Ng¢ (i) C Z which
are permitted to act as recombination partners for ¢ to create offspring. In the case of
unstructured populations, an individual can be recombined with any other individual
(e.g., in simple GA), whilst in structured populations neighborhoods are restricted.
An example for an EC algorithm using structured populations is the Parallel Genetic
Algorithm proposed by in [159].

Information sources: The most common form of information sources to create
offspring (i.e., new individuals) is a couple of parents (two-parent crossover). But
there are also recombination operators recombining more than two individuals to cre-
ate a new individual (multi-parent crossover), see [55]. More recent developments
even use population statistics for generating the individuals of the next population.
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Examples are the recombination operators called Gene Pool Recombination [161] and
Bit-Simulated Crossover [213] which make use of a distribution over the search space
given by the current population to generate the next population.

Infeasibility: An important characteristic of an EC algorithm is the way it deals
with infeasible individuals. When recombining individuals the offspring might be in-
feasible. There are mainly three different ways to handle such a situation. The most
simple action is to reject infeasible individuals. Nevertheless, for many problems it
might be very difficult to find feasible individuals. Therefore, the strategy of penal-
izing infeasible individuals in the function that measures the quality of an individual
is sometimes more appropriate (or even unavoidable). The third possibility consists
of trying to repair an infeasible solution (see [56] for an example).

Intensification strategy: In many applications it proved to be beneficial to use
improvement algorithms to improve the fitness of individuals. EC algorithms using a
local search algorithm on every individual of a population are often called Memetic
Algorithms [157, 158]. While the use of a population ensures an exploration of the
search space, the use of local search techniques helps to quickly identify “good” areas
in the search space.

Another intensification strategy is the use of recombination operators that ex-
plicitly try to combine “good” parts of individuals (rather than, for example, a sim-
ple one-point crossover for bit-strings). This also concentrates the search performed
by the EC algorithm to areas of individuals with certain “good” properties. Tech-
niques of this kind are sometimes called linkage learning or building block learning
(see [94, 221, 233, 106] as examples).

Diversification strategy: One of the major difficulties of EC algorithms (espe-
cially when applying local search) is the premature convergence toward sub-optimal
solutions. The most simple mechanism to diversify the search process is the use of
a mutation operator. The simple form of a mutation operator just performs a small
random perturbation of an individual, introducing a kind of noise. In order to avoid
premature convergence there are ways of maintaining the population diversity, such as
niching, whereby the reproductive fitness allocated to an individual in a population is
reduced proportionally to the number of other individuals that share the same region
of the search space.

This concludes the list of the main features of EC algorithms. EC algorithms have
been applied to nearly every combinatorial optimization problem. Recent successes
were obtained in the rapidly growing bioinformatics area (see for example [68]), but
also in multi-objective optimization [33], and in evolvable hardware [202]. For an
extensive collection of references to EC applications we refer to [8].

Other populations-based methods, namely Scatter Search and Path Relinking [89,
91], are sometimes also regarded as being EC algorithms. Scatter Search and its
generalized form called Path Relinking [89, 91] differ from EC algorithms mainly by
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providing unifying principles for joining (or recombining) solutions based on general-
ized path constructions in Fuclidean or neighborhood spaces. They also incorporate
some ideas originating from Tabu Search methods, as, for example, the use of adaptive
memory and associated memory-exploiting mechanisms.

In the last decade researchers tried to overcome the drawbacks of usual recom-
bination operators of EC algorithms which are likely to break good building blocks.
So, a number of algorithms (sometimes called Estimation of Distribution Algorithms
(EDA) [160]) have been developed. These algorithms have a theoretical foundation in
probability theory and are based on populations that evolve as the search progresses.
EDAs use probabilistic modeling of promising solutions to estimate a distribution
over the search space which is then used to produce the next generation by sam-
pling the search space according to the estimated distribution. After every iteration
the distribution is re-estimated. For a survey of EDAs see [170]. One of the first
EDAs proposed for combinatorial optimization is called Population-Based Incremen-
tal Learning (PBIL) [9, 10]. The objective of this method is to create a real valued
probability vector (each position corresponds to a binary decision variable) which,
when used to sample the search space, generates high quality solutions with high
probability. Initially, the values of the probability vector are initialized to 0.5 (for
each variable there is equal probability to be assigned to 0 or 1). The goal of shift-
ing the values of this probability vector in order to generate high quality solutions is
accomplished as follows: a number of solution vectors are generated according to the
probability vector. Then the probability vector is shifted toward the generated solu-
tion vector(s) with highest quality. The distance that the probability vector is pushed
depends on the learning rate parameter. Then, a mutation operator is applied to the
probability vector. After that, the cycle is repeated. The probability vector can be
viewed as a prototype vector for generating high quality solution vectors with respect
to the available knowledge about the search space. The drawback of this method is
the fact that it does not automatically provide a way to deal with constrained prob-
lems. In contrast to PBIL which is estimating a distribution of promising solutions
assuming that the decision variables are independent, various other approaches try to
estimate distributions taking into account dependencies between decision variables.

2.4.2 Ant Colony Optimization

A recent and important class of nature inspired algorithms is that of ant algo-
rithms [25]. These are algorithms inspired by the observation of social insect behavior,
and in particular by the behavior of ant colonies. In these algorithms, the traditional
emphasis on control, programming, and centralization is replaced by an emphasis
on autonomy, emergence, and distributed functioning. A particularly successful re-
search direction in ant algorithms, known as Ant Colony Optimization [46, 50, 48], is
concerned with applications to discrete optimization problems.

Ant System (AS) is the earliest example of this kind of algorithms. AS was first
applied to solve the Traveling Salesman Problem (TSP) and it achieved encouraging
results, yet not competitive with the state of the art on large problem instances. AS
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Algorithm 11 Ant Colony Optimization
while stopping criterion not satisfied do
ScheduleActivities
AntBasedSolutionConstruction()
PheromoneUpdate()
DaemonActions() {optional}
end ScheduleA-ctivities
end while

has been further modified and extended, and several variants have been designed. Ant
Colony Optimization (ACO) metaheuristic is a general framework for ant algorithms
(and their variants) applied to combinatorial optimization. In the following, we define
the problem representation adopted in ACO and we outline the high level algorithm.

The main entities of ACO are artificial ants (hereafter called simply ants) that
“walk” on a connected graph, called construction graph G = (C, L), where arcs L
(connections) fully connect nodes C' (components). The combinatorial problem at
hand is mapped onto G in such a way that feasible solutions to the original prob-
lem correspond to paths on G. Connections, components, or both, can have asso-
ciated a pheromone trail and a heuristic value. Pheromone trails provide a kind of
distributed long-term memory which encodes the history of the whole ants’ search
process. Heuristic values represent a priori information on the problem or dynamic
heuristic information.

In ACO, ants are no longer reactive agents without memory. They are essentially
stochastic solution construction procedures, equipped with memory to store the solu-
tion built (i.e., the path described in the graph) and heuristic information. Ants move
on the basis of a construction policy that is a function of the problem constraints.
They build paths by incrementally adding a node, among the feasible ones, to the
current path by taking probabilistic decisions. A state transition rule returns the
probability of adding a node to the current path. Once a solution is completed, the
ant evaluates it and retraces the same path backward depositing on nodes (or arcs) an
amount of pheromone proportional to the solution quality. This action is called online
delayed pheromone update. It is also possible for the ants to add or remove pheromone
during the path construction, executing the so called step-by-step pheromone update.
The information provided by pheromone trails will guide the solution construction
of future ants. Pheromone evaporation is achieved by executing a procedure called
pheromone trail evaporation, which decreases pheromone on the whole graph (usually
by decreasing each amount 7 of a fraction pr, with 0 < p < 1). ACO includes also
optional activities called daemon actions, which are non local procedures, such as
the application of local search to solutions, or the pheromone update on the path
corresponding to the best solution found from the beginning of the run. The high
level scheme of ACO is given in Algorihtm 11.

The ScheduleActivities construct does not specify how the three inner activities are
scheduled and synchronized and the designer is free to specify how these procedures
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interact.

As an example of a specific implementation of ACO, we briefly describe Ant System
applied to the TSP.

The TSP can be represented in ACO as follows:

e nodes of G (the components) are the cities to be visited;
e 3 solution is an Hamiltonian tour in the graph;
e constraints are used to avoid cycles (an ant can not visit a city more than once).

The ant colony is composed of m ants that iterate the same sequence of actions
until a termination condition is verified. At the beginning of the cycle ants are
randomly put on the cities (nodes of the construction graph G). Starting from its
start city, an ant moves from city to city to build an Hamiltonian tour. For the ant k,
the probability of moving from city i to city j is given by the following state transition
rule:

EleNi’“ [r]*[na]?

koo
pbi; = .
0 otherwise

{ [i;1% [m:51° if jEMk

where 7;; is the pheromone laid on arc (¢, j), n;; = 1/distance(3, j) is the heuristic,
the parameters a and f balance the relative influence of pheromone and heuristic,
and ./\fz"c is the set of cities not yet visited by ant k.

The pheromone trail evaporation is ruled by the following formula:

Tij + (1 —p) - 75 V(i,5)

where p (0 < p < 1) is the evaporation parameter.
Finally, the delayed pheromone update rule adjusts pheromone so as to make more
preferable arcs belonging to short tours:

m
Tij <_Tij+ZATiI;' V(’L,])
k=1

Ak — { 1/LF if arc (i, j) is used by ant k

i 0 otherwise,

where Ly, is the length of the tour built by ant k. In Ant System no daemon rules
are applied (e.g., every constructed solution can be used as initial solution for the
application of local search, in a similar way to hybrid genetic algorithms).
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Within the ACO metaheuristic framework, as shortly described above, the cur-
rently best performing versions in practice are Ant Colony System (ACS) [49] and
MAX-MIN Ant System (MMAS) [212].

Ant Colony System (ACS): The ACS algorithm has been introduced to im-
prove the performance of AS. ACS is based on AS but presents some important
differences. First, the daemon updates pheromone trails offline: at the end of an
iteration of the algorithm (i.e., once all the ants have built a solution) pheromone is
added to the arcs used by the ant that found the best solution from the start of the
algorithm. Second, ants use a different decision rule to decide to which component to
move next in the construction graph. The rule is called pseudo-random-proportional
rule. With this rule, some moves are chosen deterministically (in a greedy manner),
others are chosen probabilistically with the usual decision rule. Third, in ACS, ants
perform only online step-by-step pheromone updates. These updates are performed
to favor the emergence of other solutions than the best so far.

MAX-MIN Ant System (MMAS): MMAS is also an extension of AS. First,
the pheromone trails are only updated offline by the daemon (the arcs that were used
by the iteration best ant or the best ant since the start of the algorithm receive
additional pheromone). Second, the pheromone values are restricted to an interval
[Tmin, Tmaz] and the pheromone trails are initialized to their maximum value Ti,q4.
Explicit bounds on the pheromone trails avoid that the probability to construct a
solution falls below a certain value greater than 0. This means that the chance of
finding a global optimum never vanishes during the course of the algorithm.

Current research is focused on the theoretical foundations of ACO (convergence
theorems have recently been proven [211]) and the investigation of relations between
ACO and other search methods such as gradient descent and Monte Carlo algo-
rithms [146]. Recently, the similarities between ACO algorithms and probabilitic
learning algorithms such as EDAs have been recognized and studied. An impor-
tant step into this direction was the development of the Hyper-Cube Framework
for Ant Colony Optimization (HC-ACO) [24]. An extensive study on this subject
has been presented in [244], where the authors present a unifying framework for so-
called Model-Based Search (MBS) algorithms. Also, the close relation of algorithms
like Population-Based Incremental Learning (PBIL) [10] to ACO algorithms in the
Hyper-Cube Framework has been shown. We refer the interested reader to [244] for
more information on this subject.

Successful applications of ACO include the application to routing in communica-
tion networks [43], the application to the Sequential Ordering Problem (SOP) [77],
and the application to Resource Constraint Project Scheduling (RCPS) [143]. Further
references to applications of ACO can be found in [51, 52].



2.5. INTENSIFICATION AND DIVERSIFICATION: THE KEY CONCEPTS 41

2.5 Intensification and Diversification: The Key Con-
cepts

In this section we consider metaheuristics from the standpoint of the use they make
of intensification and diversification. Although the relevance of these two concepts is
commonly agreed, so far there is no unifying description to be found in the literature.
Descriptions are very generic and metaheuristic specific. Therefore most of them
can be considered incomplete and sometimes they are even opposing. Depending on
the paradigm behind a particular metaheuristic, intensification and diversification are
achieved in different ways. In [23] a unifying view on intensification and diversification
is proposed, based on an Intensification/Diversification frame which directly relates
the two concepts. In the following, we discuss the main implementations of intensifi-
cation and diversification, by observing that there are two levels: basic and strategic.
The first level characterizes the basic algorithmic components, which are intrinsic to
the algorithm. The second level, describes general strategies (usually of medium and
long term) which are applied to improve the performance of the metaheuristic.

2.5.1 Intensification and Diversification

Every metaheuristic approach should be designed with the aim of effectively and
efficiently exploring a search space. The search performed by a metaheuristic approach
should be “clever” enough to both intensively explore areas of the search space with
high quality solutions, and to move to unexplored areas of the search space when
necessary. The concepts for reaching these goals are nowadays called intensification
and diversification.

An implicit reference to the concept of “locality” is often introduced when inten-
sification and diversification are involved. The notion of “area” (or “region”) of the
search space and of “locality” can only be expressed in a fuzzy way, as they always
depend on the characteristics of the search space as well as on the definition of metrics
on the search space (distances between solutions).

The literature provides several high level descriptions of intensification and diver-
sification. In the following we cite some of them.

“Two highly important components of Tabu Search are intensification and diver-
sification strategies. Intensification strategies are based on modifying choice rules to
encourage move combinations and solution features historically found good. They
may also initiate a return to attractive regions to search them more thoroughly. Since
elite solutions must be recorded in order to examine their immediate neighborhoods,
explicit memory is closely related to the implementation of intensification strategies.
The main difference between intensification and diversification is that dur-
ing an intensification stage the search focuses on examining neighbors of
elite solutions. [...] The diversification stage on the other hand encourages
the search process to examine unvisited regions and to generate solutions
that differ in various significant ways from those seen before.” F. Glover
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and M. Laguna in [90]

Later in the same book, Glover and Laguna write: “In some instances we may con-
ceive of intensification as having the function of an intermediate term strategy, while
diversification applies to considerations that emerge in the longer run.”
Furthermore, they write: “Strategic oscillation is closely linked to the origins of tabu
search, and provides a means to achieve an effective interplay between inten-
sification and diversification.”

“After a local minimizer is encountered, all points in its attraction basin lose any
interest for optimization. The search should avoid wasting excessive computing time
in a single basin and diversification should be activated. On the other hand, in the
assumptions that neighbors have correlated cost function values, some effort should
be spent in searching for better points located close to the most recently found lo-
cal minimum point (intensification). The two requirements are conflicting and
finding a proper balance of diversification and intensification is a crucial
issue in heuristics.” R. Battiti in [12].

“A metaheuristic will be successful on a given optimization problem if it
can provide a balance between the exploitation of the accumulated search
experience and the exploration of the search space to identify regions with
high quality solutions in a problem specific, near optimal way.“ T. Stiitzle
in [209)].

“Intensification is to search carefully and intensively around good solutions found
in the past search. Diversification, on the contrary, is to guide the search to unvisited
regions. These terminologies are usually used to explain the basic elements of Tabu
Search, but these are essential to all the metaheuristic algorithms. In other words,
various metaheuristic ideas should be understood from the view point of these two
concepts, and metaheuristic algorithms should be designed so that intensi-
fication and diversification play balanced roles.” M. Yagiura and T. Ibaraki in
[242].

“Holland frames adaption as a tension between exploration (the search for new,
useful adaptations) and exploitation (the use and propagation of these adaptations).
The tension comes about since any move toward exploration — testing previously un-
seen schemas or schemas whose instances seen so far have low fitness — takes away
from the exploitation of tried and true schemas. In any system (e.g., a population
of organisms) required to face environments with some degree of unpredictability, an
optimal balance between exploration and exploitation must be found. The
system has to keep trying out new possibilities (or else it could “overadapt” and be
inflexible in the face of novelty), but it also has to continually incorporate and use
past experience as a guide for future behavior.” M. Mitchel citing J.H. Holland in
[154].
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All these descriptions share a common view: that there are two forces for which an
appropriate balance has to be found. Sometimes these two forces were described as
opposing forces. However, lately some researchers raised the question, how opposing
intensification and diversification really are.

Especially the TS literature advocates the view that intensification and diversifi-
cation cannot be characterized as opposing forces. For example, in [90], the authors
write: “Similarly, as we have noted, intensification and diversification are not opposed
notions, for the best form of each contains aspects of the other, along a spectrum of
alternatives.”

Intensification and diversification can be considered as effects of algorithm compo-
nents. We define an I&D component as any algorithmic or functional component that
has an intensification and/or a diversification effect on the search process. Accord-
ingly, examples of I&D components are genetic operators, perturbations of probability
distributions, the use of tabu lists, or changes in the objective function. Thus, 1&D
components are operators, actions, or strategies of metaheuristic algorithms.

In contrast to the still widely spread view that there are components that have
either an intensification or a diversification effect, there are many I&D components
that have both. In I&D components that are commonly labeled as intensification,
the intensification component is stronger than the diversification component, and vice
versa. We can characterize two extremes: pure intensification and pure diversification.
We will show that most (if not all) the components and strategy used in metaheuristics
are located in between the two extremes. In other words, they all have both an
intensification and a diversification effect, being one stronger than the other. We say
that a component (or a strategy) has a pure intensification effect if it is solely guided
by the objective function. Conversely, components only guided by functions other
than the objective function (e.g., random, frequency-based rank, etc.) have a pure
diversification effect!.

2.5.2 Basic Level of Intensification and Diversification

The I&D components occurring in metaheuristics can be divided in basic (or intrin-
sic) ones and strategic ones. The basic I&D components are the ones that are defined
by the basic ideas of a metaheuristic. On the other side, strategic 1&D components
are composed of techniques and strategies the algorithm designer adds to the basic
metaheuristic in order to improve the performance by incorporating medium and long
term strategies. Many of these strategies were originally developed in the context of
a specific metaheuristic. However, many of these strategies can also be very useful
when applied in other metaheuristics. In the following, we choose some basic 1&D
components that are inherent to a metaheuristic and show that most of the basic I&D
components have an intensification character as well as a diversification character.

161n [23] this discussion is based on a frame which grafically show these relations.
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For many components and strategies of metaheuristics it is obvious that they
involve an intensification as well as a diversification component, because they make
an explicit use of the objective function. For example, the basic idea of TS is a
neighbor choice rule using one or more tabu lists. This I&D component has two
effects on the search process. The restriction of the set of possible neighbors in every
step has a diversifying effect on the search, whereas the choice of the best neighbor
in the restricted set of neighbors (the best non-tabu move) has an intensifying effect
on the search. The balance between these two effects can be varied by the length of
the tabu list. Shorter tabu lists result in a lower influence of the diversifying effect,
whereas longer tabu lists result in an overall higher influence of the diversifying effect.
Another example for such an I&D component is the probabilistic acceptance criterion
in conjunction with the cooling schedule in SA. The acceptance criterion is guided
by the objective function and it also involves a changing amount of randomness.
The decrease of the temperature parameter drives the system from diversification to
intensification, eventually leading to a convergence of the system!?. A third example
is the following one. Ant Colony Optimization provides an I&D component that
manages the update of the pheromone values. This component has the effect of
changing the probability distribution that is used to sample the search space. It is
guided by the objective function (solution components found in better solutions than
others are updated with a higher amount of pheromone) and it is also influenced by
a function applying the pheromone evaporation.

For other strategies and components of metaheuristics it is not immediately obvi-
ous that they have both, an intensification and a diversification effect. An example is
the random selection of a neighbor from the neighborhood of a current solution, as it
is done for instance in the kick-move mechanism of ILS. Initially one might think that
there is no intensification involved and that this mechanism has a pure diversification
effect caused by the use of randomness. However, for the following reason this is not
the case. Many strategies involve the explicit or implicit use of a neighborhood. A
neighborhood imposes a structure on the search space, since it defines the topology
of the so-called fitness landscape [205, 206, 122, 128] which can be visualized as a
labeled graph, as defined in Sec. 2.3.1. A fitness landscape can be analyzed by means
of statistical measures. One of the common measures is the auto-correlation, that
provides information about how much the fitness will change when a move is made
from one point to a neighboring one. Different landscapes differ in their ruggedness. A
landscape with small (average) fitness differences between neighboring points is called
smooth and it will usually have just a few local optima. In contrast, a landscape with
large (average) fitness differences is called rugged and it will be usually characterized
by many local optima. Most of the neighborhoods used in metaheuristics provide
some degree of smoothness that is higher than the one of a fitness landscape defined
by a random neighborhood. This means that such a neighborhood is, in a sense,
preselecting for every solution a set of neighbors for which the average fitness is not
too different. Therefore, even when a solution is randomly selected from a set of

17Here we use the term convergence in the sense of getting stuck in the basin of attraction of a
local minimum.
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neighbors, the objective function guidance is implicitly present. The consequence is
that even for a random kick-move there is some degree of intensification involved, as
far as a non-random neighborhood is considered.

Dual considerations hold for a random mutation operator of an EC method. In the
following we assume a bit-string representation and a mutation operator that is char-
acterized by flipping each bit of the solution with a certain probability. The implicit
neighborhood used by this operator is the completely connected neighborhood (i.e.,
every pair of solutions is directly connected). However, the neighbors have different
probabilities to be selected. The ones that are closer (with respect to the Hamming
distance) to the solution to which the operator is applied to, have a higher probability
to be generated by the operator. Thus, with the same argument as above, we observe
that the objective function is implicitly used as a guidance. The balance between
intensification and diversification is determined by the probability to flip each bit.
The higher this probability, the higher the diversification effect of the operator. In
contrast, the lower this probability, the higher the intensification effect of this opera-
tor.

On the other side, there are some strategies that are often labeled as pure intensi-
fication. One example is the selection operator in EC algorithms. However, nearly all
selection operators involve some degree of randomness (e.g., proportionate selection,
tournament selection). This means that they also have a diversifying effect. The bal-
ance between intensification and diversification depends on the function that assigns
the selection probabilities. If the differences between the selection probabilities are
quite high, the intensification effect is higher, and similarly for the other extreme of
having only small differences between the selection probabilities.

Even an operator like the neighbor choice rule of a steepest descent local search
has a diversifying component. Indeed, the search is “moving” in the search space with
respect to a neighborhood. A neighborhood can be regarded as a function other than
the objective function, making implicit use of the objective function. Therefore, a
steepest descent local search has both a strong intensification effect, but also a weak
diversification character.

Based on these observations we conclude that probably most of the basic I&D
components used in metaheuristics have both, an intensification and a diversification
effect. However, the balance between intensification and diversification might be quite
different for different I&D components.

2.5.3 Strategic control of intensification and diversification

The right balance between intensification and diversification is needed to obtain an
effective metaheuristic. Moreover, this balance should not be fixed or only changing
into one direction (e.g., continuously increasing intensification). This balance should
rather be dynamical. This issue is often treated in the literature, both implicitly and
explicitly, when strategies to guide search algorithms are discussed.
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The distinction between intensification and diversification is often interpreted with
respect to the temporal horizon of the search. Short term search strategies can be
seen as the iterative application of tactics with a strong intensification character (for
instance, the repeated application of greedy moves). When the horizon is enlarged,
usually strategies referring to some sort of diversification come into play. Indeed, a
general strategy usually proves its effectiveness especially in the long term.

The simplest strategy that coordinates the interplay of intensification and diver-
sification and can achieve an oscillating balance between them is the restart mecha-
nism: under certain circumstances (e.g., local optimum is reached, no improvements
after a specific number of algorithm cycles, stagnation, no diversity) the algorithm is
restarted. The goal is to achieve a sufficient coverage of the search space in the long
run, thus the already visited regions should not be explored again. The computation-
ally least expensive attempt to address this issue is a random restart.

Usually, the most effective restart approaches make use of the search history.
Examples for such restart strategies are the ones based on concepts such as global
frequency and global desirability. The concept of global frequency is well known from
TS applications. In this concept, the number of occurrences of solution components is
counted during the run of the algorithm. These numbers, called the global frequency
numbers, are then used for changing the heuristic constructive method, for example
to generate a new population for restarting an EC method or the initial solution for
restarting a trajectory method. Similarly, the concept of global desirability (which
keeps for every solution component the objective function value of the best solution
it had been a member of) can be used to restart algorithms with a bias toward good
quality solutions. Examples of the use of non-random restarts can be found also in in
population-based methods. In EC algorithms the new population can be generated
by applying constructive heuristics'®. In ACO, this goal is addressed by smoothing
or resetting pheromone values [212]. In the latter case, if the pheromone reset is also
based on the search history, the action is located inside the 1&D frame.

There are also strategies explicitly aimed at dynamically changing the balance
between intensification and diversification during the search. A fairly simple strategy
is used in SA, where an increase in diversification and simultaneous decrease in inten-
sification can be achieved by “re-heating” the system and then cooling it down again
(which corresponds to increasing parameter T' and decreasing it again according to
some scheme). Such a cooling scheme is called non-monotonic cooling scheme (e.g.,
see [138] or [166]). Another example can be found in Ant Colony System (ACS).
This ACO algorithm uses an additional I&D component aimed at introducing diver-
sification during the solution construction phase. While an ant is walking on the
construction graph to construct a solution it reduces the pheromone values on the
nodes/arcs of the construction graph that it visits. This has the effect to reduce for
the other ants the probability of taking the same path. This additional pheromone
update mechanism is called step-by-step online pheromone update rule. The interplay
between this component and the other pheromone update rules (online delayed phero-

183ee, for example, [75, 99].
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mone update rules and online pheromone update rule) leads to an oscillating balance
between intensification and diversification.

Some more advanced strategies can be found in the literature. Often, they are
described with respect to the particular metaheuristic in which they are applied.
However, many of them are very general and can be easily adapted and reused also
in a different context. A very effective example is Strategic Oscillation [90]'°. This
strategy can be applied both to constructive methods and improvement algorithms.
Actions are invoked with respect to a critical level (oscillation boundary), which usu-
ally corresponds to a steady state of the algorithm. Examples for steady states of
an algorithm are local minima, completion of solution constructions, or the situation
were no components can be added to a partial solution such that it can be completed
to a feasible solution. The oscillation strategy is defined by a pattern indicating the
way to approach the critical level, to cross it and to cross it again from the other
side. This pattern defines the distance of moves from the boundary and the duration
of phases (of intensification and diversification). Different patterns generate different
strategies; moreover, they can also be adaptive and change depending on the cur-
rent state and history of the search process. Other representative examples of general
strategies that dynamically coordinate intensification and diversification can be found
in [13, 21, 22].

Furthermore, strategies can deal not only with single actions (e.g., variable as-
signments, moves), but can also guide the application of coordinated sequences of
moves. Examples of such a strategy are given by so-called ejection chain proce-
dures [90, 184, 185]. These procedures provide a mechanism to perform compound
moves, i.e., compositions of different kinds of moves. For instance, in a problem
defined over a graph (e.g., the VRP), it is possible to define two different moves:
insertion and exchange of nodes; a compound move can thus be defined as the com-
bination of an insertion and an exchange move. These procedures describe general
strategies to combine the application of different neighborhood structures, thus they
provide an example of a general diversification/intensification interplay. Further ex-
amples of strategies which can be interpreted as mechanisms to produce compositions
of interlinked moves can also be found in the literature concerning the integration of
metaheuristics and complete techniques [29, 201].

2.5.4 Hybridization of metaheuristics

We conclude this chapter by discussing a very promising research issue: the hybridiza-
tion of metaheuristics. In fact, many of the successful applications that we have cited
in previous sections are hybridizations2C.

One of the most popular ways of hybridization concerns the use of trajectory

methods in population-based methods. Most of the successful applications of EC

9Tndeed, in [90] and in the literature related to TS, many strategies are described and discussed.
20For a taxonomy of hybrid metaheuristics see [217].
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and ACO make use of local search procedures. The reason for that becomes apparent
when we analyze the respective strengths of trajectory methods and population-based
methods.

The power of population-based methods is certainly the fact that they recombine
solutions to obtain new ones. In EC algorithms and Scatter Search explicit recombi-
nations are implemented by one or more recombination operators. In ACO and EDAs
recombination is implicit, because new solutions are generated by using a distribu-
tion over the search space which is a function of earlier populations. This enables to
make guided steps in the search space which are usually “larger” than the steps done
in trajectory methods. In other words, a solution resulting from a recombination in
population-based methods is usually more “different” from the parents than, say, a
predecessor solution to a successor solution (obtained by applying a move) in Tabu
Search. We also have “big” steps in trajectory methods such as ILS and VNS, but
in these methods the steps are usually not guided (these steps are rather called “kick
move” or “perturbation” indicating the lack of guidance). It is interesting to note,
that in all population-based methods there are mechanisms in which good solutions
found during the search influence the search process in the hope to find better solu-
tions in-between those solutions and current solutions. In Path Relinking this idea
is implemented in the most explicit way. The basic elements are guiding solutions
(which are the good solutions found) and initiating solutions. New solutions are pro-
duced by applying moves to decrease the distance between the resulting solution and
the guiding solution. In EC algorithms this is often obtained by keeping the best
(or a number of best) solution(s) found since the beginning of the respective run of
the algorithm in the population. In some ACO implementations (see for example
[212, 22]) a particular pheromone updating schedule is applied. When the algorithm
has nearly converged to a solution, only the best found solution since the start of the
algorithm is used for updating the pheromone trails. This corresponds to “changing
direction” and directing the search process toward a very good solution in the hope
to find better ones on the way.

The strength of trajectory methods is rather in the way they explore a promising
region in the search space. As in those methods local search is the driving component,
a promising area in the search space is searched in a more structured way than in
population-based methods. In this way the danger of being close to good solutions
but “missing” them is not as high as in population-based methods.

In summary, population-based methods are better in identifying promising areas
in the search space, whereas trajectory methods are better in exploring promising
areas in the search space. Thus, metaheuristic hybrids that combine the advantage
of population-based methods with the strength of trajectory methods are often very
successful.

A second form of integration concerns systems that are usually called coopera-
tive search. They consist of various algorithms exchanging information in some way.
Cooperative search will be deeply discussed in Sec. 3.5.6. Finally, the integration of
approximate and systematic (or complete) methods is nowadays an important and
prolific research direction. We will overview and discuss this topic in chapter 7.
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2.6 Conclusion

In this chapter, we have introduced metaheuristics and related concepts. First, we
have discussed possible classifications, based on the main attributes of metaheuristic
algorithms: population/single point, objective function, neighborhood structure and
memory. Then, we have given a survey of the most important metaheuristics, by
describing the basic algorithms along with variants and improvements. Finally, we
have shown that metaheuristic algorithmic mechanisms and strategies are designed
with the aim of exploiting the interplay between intensification and diversification.
Most of metaheuristic components have both the characteristics at the same time, but
one is usually stronger than the other. Intensification and diversification can be used
as key concept to analyze, compare and design metaheuristics. In this chapter we
have presented metaheuristics from an algorithmic standpoint. In the next chapter,
we will describe an architecture that enables the implementation of metaheuristics by
designing and connecting the algorithmic components.
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Chapter 3

A Multi-level Architecture for
Metaheuristics

In this chapter, we introduce an architecture that enables the design and implemen-
tation of metaheuristics in a component-based fashion. We move the focus from the
algorithmic and conceptual viewpoint, to the software engineering approach.

We will first revisit metaheuristics in a multiagent perspective, by providing a
formal definition of the agents and their coordination (Sec. 3.4). Then, in Sect. 3.5
we will show some examples that describe the implementation in this framework of
some among the best known metaheuristic algorithms (already introduced in the
previous chapter) and we will further extend the examples by considering cooperative
search.

3.1 Motivations

Classifications of metaheuristics are useful when they help to outline structural sim-
ilarities and differences among algorithms. Once some common key properties have
been recognized, a general description can be formulated, and the algorithms of that
class can be defined as specializations of it. A metaheuristics framework can be useful
for:

e comparing existing algorithms;
e designing (new) hybrid algorithms;
e supporting software engineering.

In this framework, we first try to identify the common principles and basic compo-
nents underlying metaheuristic algorithms. These components will be encapsulated
in communicating software components with clear structure and interface. Compo-
nents are organized in levels. Components belonging to lower levels are simple and,
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in some cases, simply react to events, while components belonging to higher levels
have deliberative capabilities, embed complex strategies and behave autonomously.
For these reasons, in our system, components are called agents, even if the starting
point of the agent view of our architecture is more oriented to software engineering
rather than to Distributed Artificial Intelligence and Multi Agent Systems [236]. In
fact, our architecture can be implemented as a centralized system where, instead of
agents, we have software components such as objects.

We define a four levels architecture. In each level, one or more agents act: to the
first level belong solution builders, to the second one solution improvers, then strategic
agents live in the third level and coordinating agents in the fourth one. Agents
belonging to the same level have the same structure. We will clearly define which
is the structure of each agent, and its interface. Agents belonging to different levels
communicate for exchanging results and information. We define the coordination
scheme among agents as a labelled transition system.

The distinction and separation between different roles and levels is important for
the comprehension of metaheuristics, their comparison, their design and implementa-
tion. In fact, in this way we are able to bring together flexibility in computing, possi-
bly distribution in processing and heterogeneous forms of realizations. The framework
proposed fulfills in fact the above mentioned features of a metaheuristic framework.
First, it enables to compare existing algorithms from a structural perspective, as far
as the number of agents, their structure and their communications are concerned.
For example, algorithms providing a feedback from higher levels to lower ones are
those enabling a deliberative capability like a form of learning or adaptation in the
metaheuristic algorithm. Indeed, the feedback loop means that the search history
is exploited to dynamically balance intensification and diversification, to adaptively
tune parameters and to apply learning techniques, like the ones used in [47, 127, 152].
In this perspective, the framework can be useful for teaching metaheuristics, with the
aim of describing the basic algorithmic components, their interfaces and the effect of
communication.

Second, the architecture can be helpful in the design of (new) hybrid algorithms.
For instance, we can start from an existing algorithm and we can add a further com-
munication link between two levels. The new information exchange can be used to
influence the behavior of one or more agents (e.g., exploitation of the search history).
We may also add or substituting one or more agents in any level. Another possibility,
strongly used in cooperative search, concerns the design of hybrid algorithms putting
together existing metaheuristics. Cooperative search has been proved useful for solv-
ing large-scale optimization problems and multi-criteria optimization problems.

Finally, we can support software engineering since we isolate basic components
which can be easily composed and re-used. In fact, we can change only one part
of the architecture by maintaining the interface and changing the implementation
without re-writing the whole application. The user can now compose his/her own
strategy by putting together software components, without starting from scratch a
new code each time an algorithm has to be implemented.
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Algorithm 12 Adaptive Memory Programming
Initialize the memory
while stopping condition not met do
Generate a new provisory solution s using data stored in the memory
Improve s with a local search; let s’ be the improved solution
Update the memory using pieces of knowledge brought by s
end while

3.2 Metaheuristic frameworks

There are different ways to describe metaheuristic algorithms. The most adopted
criteria have been discussed in the previous chapter. Here we just mention a very
interesting framework called Adaptive Memory Programming (AMP, [216]). AMP
describes a class of metaheuristics as algorithms which use a memory to store in-
formation collected during the search process; this information is used to bias the
solution construction and the future search (hence the term adaptive). AMP high
level algorithm, as it appears in [216], is reported in Algorithm 12.

Within this general framework, several metaheuristics can be described, like Tabu
Search, Ant Colony Optimization (ACO) and Scatter Search. Tabu Search explicitly
handles a short term memory (the tabu list), which is used to avoid cycling among
the same set of states. In population-based metaheuristics, memory is implicitly
embedded in shared data structures (population itself in evolutionary algorithms and
pheromone trails in ACO). AMP clearly points out the importance of the use of
memory during the solution construction and the search. Nevertheless, the level of
abstraction chosen enables only to informally introduce concepts of memory, stored
information and solutions, and its usefulness is limited to a general description of
algorithms which make use of search history. AMP cannot be used as a framework
which helps to design hybrid algorithms, as its descriptive level is too general.

Other ways of describing metaheuristic algorithms have been proposed. An exam-
ple mentioned in the previous chapter, is a framework for evolutionary computation
algorithms [109]. In that framework, evolutionary algorithms are described depending
on seven main features: individual representation, evolution process, neighborhood
structure, information sources, infeasibility, intensification and diversification.

3.3 MAGMA: MultiAGent Metaheuristic Architec-
ture

The weak notion of agent [60, 194, 236, 240] states that an agent is a (software)
system that enjoys the following properties: autonomy, social ability, reactivity, and
pro-activeness. In this context, we just adopt the metaphor of agent referring to
a system able to build a solution, move over a landscape, communicate with other
agents, be active (goal-oriented) and, possibly, be adaptive. Agents in our architecture
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are reactive, since they must act as soon as their input is provided. Agents are
autonomous, since they may need to have deliberative capabilities, as in the most
general case they incorporate complex search strategies. The social ability is required
only for communication; we do not take into account agent society formation and
behavior. Our agents are pro-active since their goal is to apply the strategy to the
model.

We devise different kinds of agents, with different functionalities, perspectives
and goals. These agents act in a multi-level architecture (MAGMA, depicted in
Figure 3.1), composed of some levels each of which corresponds to a different level of
abstraction.

At each level there are one or more specialized agents, each implementing an algo-
rithm. The LEVEL-0 provides a feasible solution (or a set of solutions) for the upper
level; it can be considered the solution level. LEVEL-1 deals with solution improve-
ment and agents perform a trajectory in the fitness landscape until a termination
condition is verified; this can be defined as the level which deals with neighborhood
structure. LEVEL-2 agents have a global view of the space, or, at least, their task
is to guide the search toward promising regions and provide mechanisms for escaping
from local optima. Therefore this can be defined as the landscape level.

Classical metaheuristic algorithms can be easily described via these three levels.
In fact, we will show in Section 3.5 that using only three levels we are able to de-
scribe simple metaheuristics. With simple we mean non hybrid algorithms. When
various search strategies (complete or incomplete) are combined, we have a cooper-
ative search framework, where metaheuristics and other search method coexist and
exchange results. In this case an additional level, LEVEL-3, coordinating different
search strategies should be devised. Therefore this can be defined as the coordination
level and deals with different landscapes and strategies.

Coordination among agents involves both communication and synchronization. A
formal and general coordination model will be provided in Section 3.4. Communica-
tions between any two levels are possible, therefore an algorithm can be described as
the result of the interaction of some agents (algorithmic components) each special-
ized for a specific task. Communication among agents can be implemented through
any kind of mechanism and protocol. The designer is free of choosing the most suit-
able communication scheme. For example, agents can use a blackboard or a message
passing mechanism.

Agents can be formally defined with tuples, whose elements describe computa-
tional capabilities, knowledge and goals. This definition encompasses all the current
metaheuristics. Each tuple is composed of two main components: the model M and
the strategy S. In the following, we formalize the tuples for each level, while in
section 3.5 we will specialize the tuples on specific algorithms.

3.3.1 Definition of the multi-level architecture

LEVEL-0 To this level belong solution builder agents, whose task is to produce
starting solutions. LEVEL-0 agents, hereinafter referred to as LO-agents, deal with
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LEVEL 3 COORDINATION LEVEL
b i
® ®
LEVEL 2 STRATEGIC AGENTS
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LEVEL 1 SOLUTION IMPROVERS e
4 s @/
® @ S
»
LEVEL 0 SOLUTION BUILDERS L

Figure 3.1: Multi-level architecture for metaheuristic algorithms. Note that only
numbered arrows are indeed used by existing metaheuristics, while non numbered
arrows can be used for extending existing algorithms.

problem entities such as variables, domain values and constraints or partial solutions,
depending on the representation chosen. L0-agents’ goal is to construct an initial so-
lution for the upper level. LO-agents may exploit strategies like random initialization,
greedy construction, probabilistic construction (e.g. pheromone based), etc. Their
computational capabilities are usually quite limited, but can be very complex as we
will show in Large Neighborhood Search. They are generally reactive agents, whose
behavior is based upon a heuristic criterion (which may be dynamically changed by
upper levels agents).

Agents of LEVEL-0 are defined by tuple To = (Mo, S), where Mg = (V,D,C, OF).
V are components, the domains D define the values that components can assume, C are
the constraints and finally OF is the objective function. Sy is the strategy which will
be specialized depending on the metaheuristic algorithm we are describing. We will
provide some examples of strategies in Section 3.5. The strategy is the actual construc-
tive algorithm, for instance it can be random, greedy, probabilistic, etc. Components
can be variables or partial solutions, or any element which is used as a building block
for solutions. Constraints are needed for the agent to construct solutions which are
feasible with respect to the model (indeed, it is possible that they are infeasible for
the original problem, as shown in Section 2.3.1 where an example of LS on SAT is
discussed).

It is worth noting that LO-agents are constructive agents that are able to build
a feasible solution for the model Mj. This solution is computed depending on the
strategy Sp which can be an approximate algorithm, like a greedy strategy, that simply
finds the first solution. We will show that L0O-agents can also implement a complete



56 CHAPTER 3. A MULTI-LEVEL ARCHITECTURE FOR METAHEURISTICS

algorithm, like branch and bound which computes the optimal solution with respect to
the objective function. The fact that a single agent can compute the optimal solution
has two advantages: the first is that our architecture can be used to describe not only
metaheuristics, but also complete methods. Second, MAGMA can describe hybrid
algorithms, like cooperative search and large neighborhood search, where complete
solvers are integrated into metaheuristics [35, 65, 171] and L0-agents then optimally
solve subproblems.

As an output LEVEL-0 provides one or more solutions to the upper levels. In
addition, LEVEL-0 can be triggered each time a restart is performed.

LEVEL-1 This level contains solution improver agents. Each agent searches
in a Fitness Landscape (FL) with a local search, trying to improve the solution it
has received from another agent. LEVEL-1 agents (L1l-agents) implement various
search algorithms and they can constitute either single independent search agents, or
cooperating agents. L1-agents deal with solutions and neighborhood structures. The
usual concept of short term memory belongs to this level: agents can use their recent
past to intensify the search or to escape from local optima. Therefore, L1-agents are
usually not just reactive, but they may have deliberative capabilities even if rather
limited.

Ll-agents are defined by tuple 71 = (M;1,81), where My = (Sol N, H,F). &
is the strategy used to improve the solution and again it will be specialized on the
specific metaheuristic. Let us consider now the model M;: Sol is the initial solution,
N is the neighborhood structure, H is the search history and F is the fitness function.

The solution provided by LEVEL-0 (arrow I in Figure 3.1) or any other agent
(see for example arrow 4) is the starting point of the search, guided by the strategy
which, in general, makes use of the search history and the fitness function. A very
important element is the neighborhood structure, which defines the portion of search
space visible from each state. The neighborhood structure can be also dynamic (as for
Tabu Search) or the agent can dynamically change neighborhood during the search
process, if suggested by upper level agents (arrow 4). For instance, the effectiveness of
the combination of different neighborhoods has been proven very effective in Variable
Neighborhood Search [105] and in a new metaheuristic called Multi-Neighborhood
Search [80]. In general, every agent can receive not only simple pieces of information
(such as solutions), but also more complex data such as neighborhoods, statistics or
parts of the search history, etc.

The output of LEVEL-1 is the improved solution, which usually represents a local
optimum or a state corresponding to search stagnation.

It is worth to stress that the more complex an agent is, the more difficult is the
separation of basic algorithmic components. Therefore, instead of having LEVEL-1
agents with very sophisticated dynamic neighborhood structures, this architecture
suggests to design simpler agents coordinated by an upper level agent. Thus, for
example, metaheuristics with dynamic neighborhoods can be described as a system
composed of LEVEL-1 agents with only one neighbor which alternate their search
process under the coordination of a strategic agent of LEVEL-2.

LEVEL-2 LEVEL-2 agents (L2-agents) are strategic agents, since their main



3.3. MAGMA: MULTIAGENT METAHEURISTIC ARCHITECTURE 57

role is to balance intensification and diversification. Todays most effective metaheuris-
tics have usually a non trivial strategy to dynamically balance intensification and
diversification, achieved by the use of search history (descriptions of such advanced
strategies can be found in [90]). Moreover, L2-agents can sample or abstract the
search space looking for promising regions to explore. With respect to the general
architecture depicted in Figure 3.1 they can perform activities like the following;:

e store the best solutions found among those provided by LEVEL-1 (arrow 3);

e suggest what building blocks (e.g. partial solutions) have the highest probability
of being part of the optimal solution (arrow 7);

e suggest what regions of a (single) landscape are the most promising (arrow 4);
e dynamically bias the intensification/diversification balance (arrows 4 and 7);

e switch between two landscapes (arrow 4).

L2-agents deal with landscapes. Long term memory is implemented and exploited
at this level, where data concerning the whole history of the search process of lower
level agents are stored. One of the main uses of long term memory is the implemen-
tation of diversification strategies.

L2-agents are described by the tuple 73 = (M2, S2), where My = (P, H,F) and
8o is the strategy used for guiding lower level agents.

The model contains P, i.e., the set of solutions of L1-agents, the history H and the
fitness function F. The set P of solutions provided by Ll-agents can be used in po-
pulation based methods, in which recombination and mutation operators are applied
to the population. The history H is the structured ensemble of data collected during
the overall search process. It includes information on every agent search process, for
instance the best solution found. This information is exploited by the strategy which
guides lower level agents.

Using levels 0, 1 and 2 we are able to describe almost all simple metaheuristic
algorithms, i.e., algorithms that do not combine more than one strategy in each
level. However, more complex metaheuristics can be devised, namely those integrating
more than one (complete or incomplete) strategy. Suppose for example, that we
have to describe a cooperative search mechanism that combines two metaheuristics
and exchanges solutions. In this, case, while the two metaheuristics can be settled
in the three level architecture, there is something missing, i.e., the coordination of
the two metaheuristic. We therefore need an additional level that coordinates two
algorithms, identifies which parts of the solutions should be exchanged, if any, and
so on. In general, we need some deliberation capability that organizes lower level
agents. For this purpose, we introduce an additional level which will be used to
describe cooperative algorithms.

LEVEL-3 Agents belonging to this level (called L3-agents) coordinate lower
level agents behavior. These agents know the model and strategy of all lower level
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agents and coordinate their behavior and communications. For example, in a coop-
erative search framework, where more than one metaheuristic algorithm is involved,
the information they communicate to each other is decided by a level-3 agent. If so-
lutions are exchanged, the level-3 agent should for instance have a notion of distance
between solution and exchange solution that are enough different for the other. This
capability could also be applied to select, adapt and improve the lower level agents
in population based metaheuristics (those actions involve communications expressed
by arrows 5 and 6). As a final example, which will be explained in detail in section
3.5.6, we mention large neighborhood search (LNS). LNS is one of the most successful
techniques for merging complete and incomplete methods. The idea is to start with a
solution, fix some parts of it and optimally solve the rest. In this case, level-3 agents
decide which parts should be fixed and which subproblems should be solved in order
to eventually improve the solution.

Thus, L3-agents perform meta-reasoning on the behavior of agents at lower levels.
The computational capabilities of L3-agents can be the highest among all the levels.

L3-agents are described by the tuple T3 = (M3,S3), where M3 = (7o, T1,T2)
and Sz is the strategy used for guiding lower level agents. The model M3 contains
the complete description of lower level agents and the strategy Ss defines the specific
coordination scheme.

It is worth noting that each level has the same structure composed of a model
and a strategy. Observe that the higher the level, the higher the abstraction. In
fact, My is strongly problem dependent: components represent problem entities and
constraints are relations among them. On the contrary, M; manipulates solutions
independently from their semantics and M further enlarges the gap between the
problem and its representation since it focuses on intensification and diversification
strategies. Finally, M3 can be considered as a meta-model containing the tuples of
lower level agents.

An interesting observation is that levels 2 and 3 have a similar characteristic: they
guide underlying levels. However, while level 2 coordinates trajectory methods, level
3 coordinates metaheuristic algorithms, but both have deliberative capabilities.

In MAGMA the definition of the environment is very simple. What agents perceive
as “external” is just the set of agents to whom they communicate. Therefore, for any
agent A;, the environment is defined as the set of agents that send information to A;
and the set of agents receiving information from A;.

3.4 Coordination

On the most general level of abstraction, we can describe agent coordination as the
composition of basic states and actions. Agents wait for an input, then execute the
algorithm specified by the strategy S and send the result to the destination (i.e., the
specified receiver agent).

A particularly suitable formalism to describe this kind of coordination is the one of
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Labelled Transitions Systems, LTS [220]. LTS are mainly used to formally define the
coordination among processes, but they are also applied in the context of multiagent
systems [223].

Formally, a LTS is a pair (IP, —), where IP is a set of processes and -»C P x Act xIP
is an infix predicate. Act is a set of possible actions that can be performed by the
processes. Actions are defined with respect to a chosen level of abstraction, therefore
they can be general actions (e.g., execute a given algorithm) or specific actions (e.g.,
greedy solution construction). Usually, the following notation is used: p = ¢, meaning
that the process p can perform the action a and after its completion it reaches a
state where ¢ is the process remaining part. Actions of Act can be composed of
computational activities (in a finite number for a finite time interval) and can be also
synchronization of a process with the environment or the receipt of a signal sent by
the environment.

LTS define the result of the execution of all the allowed actions for every process
of the system. In case of alternatives (i.e., a process p is in a state such that it is
allowed to perform more than one action), LTS do not specify the choice among the
possible cases.

For the sake of readability, we will indicate state transitions and not process
transitions, i.e., p = ¢ means that the agent in state p can perform action a and after
its completion it will be in state q.

We formalize the coordination among agents by means of LTS assuming the most
general level of abstraction, which corresponds to the level of abstract classes in
the object oriented terminology. On this level of abstraction, the actions agents can
perform are three: send, execute and receive. The actions send and receive refer to the
communication between agents (e.g., send solution to L1-agent, receive solution from
LO-agent). send can also have as arguments a list of agents along with the respective
messages to be sent. The action ezecute encapsulates the overall agent computation,
i.e., we adopt a blackbox description of the computational part of the agents. The
action ezxecute is an abstraction of the execution of the particular algorithm specified
by the strategy S of the agent tuple.

On the same level of abstraction, at each time stamp agents can assume one out
of three states: WAIT, READY and COMPLETED. The state WAIT means that the agent is
waiting for an input to start the execution of the algorithm. Agents are in state READY
when they have received the needed input and they can start their execution. Finally,
COMPLETED corresponds to the state reached after the termination of the execution
(i.e., when the agent is ready to send its output to the receiver agent).

It is also possible that an agent needs more than one input before it can start the
execution of the strategy. Therefore, we also add a fourth state that represents the
condition in which an agent is waiting for the completion of the collection of inputs.
We call this state WAIT FOR_ALL.

The corresponding labelled transition system, which describes all the agents of the
multi-level architecture is composed of four possible transitions:

o WAIT receive(ﬂ,sender) READY
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receive([msgi1,A1],...,[msgn,An
(Imsg1,A1],...,[msg D

e WAIT FOR_ALL READY

execute(strategy)
—

e READY COMPLETED

send(msg(s),receiver(s
(msg(s) ()

e COMPLETED WAIT

Every specialization of metaheuristics in MAGMA can be defined also by instan-
tiating this general LTS.

Finally, we note again that the notion of environment used in MAGMA is fairly
simple, as it is defined, for every agent, as the set of senders and receivers.

3.5 Specializing MAGMA

MAGMA can be exploited either as a conceptual and implementation framework for
metaheuristic algorithms, or as a metaphor for designing multiagent algorithms for
optimization problems. In this section, we concentrate on the first topic and we show
how some among the most effective metaheuristic algorithms can be described in
terms of MAGMA. We will describe some specializations of the architecture showing
that both trajectory and population based algorithms can be easily defined in our
framework.

In the following sections, we will specialize the tuples describing the agents involved
in each metaheuristic and the agent coordination through a LTS. Obviously, the
models, i.e., M;, depend on the particular problem to be solved, thus here they are
skipped. Thus, for each tuple, we will describe only the strategy.

There are metaheuristics which can just be described by L0-agents and L1-agents.
For example, the basic Tabu Search can be realized with a single L0-agent which
randomly constructs an initial solution and a single Ll-agent which performs the
search with one or more tabu lists. Of course, Tabu Search metaheuristics make
often use of long term memory and therefore they need a further agent at LEVEL—
2 which balances intensification and diversification, for instance by enlarging and
restricting the tabu list. Typical examples of dynamic tabu length tuning can be
found in [90] (for instance, a strategy called strategic oscillation) and in [13, 14],
where an adaptive mechanism is proposed. The issue involving the dynamic control
of intensification and diversification is one among the most relevant in metaheuristics
research [13, 14, 23, 22, 32].

The detailed description and discussion of the metaheuristic algorithms has al-
ready be given in Chap. 2 and here they are presented just in their easiest and general
form. It is worth noting that variants of these algorithms can be easily obtained by
changing the algorithms implemented at any level. Moreover, it is always possible to
introduce more than one agent per level. Communications between levels are very
important as well, and in principle they involve all possible combinations of links
between levels, even if the metaheuristic algorithms designed so far use just some of
all possible communication links.
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Algorithm 13 Greedy Randomized Adaptive Procedure
while stopping criterion not satisfied do
Construct a solution s with a Greedy Randomized procedure
Apply local search to s
Memorize the best solution found
end while

LEVEL 2 Store best solution

A

LEVEL 1 Local Search

A

LEVEL O Greedy Randomized Construction

Figure 3.2: The Multi-level architecture version of GRASP.

3.5.1 Greedy Randomized Adaptive Procedure (GRASP)

We start our series of examples with a very simple algorithm: GRASP [59]. This
algorithm is composed of a greedy construction procedure and a local search procedure
(see the sketched Algorithm 13). The construction procedure builds a solution by
applying a greedy function which, at each step, adds a randomly chosen component
among the ones which have the highest greedy function value. Then, a local search
phase starts; the choice of the local search algorithm depends on the problem to be
solved. GRASP is easily described in MAGMA': the first level generates a solution by
means of a greedy algorithm, a single L1-agent performs local search, and finally a L.2-
agent keeps track of the best solution found. Communications are unidirectional and
the information flow from LEVEL-0 to LEVEL-1 and from LEVEL-1 to LEVEL-2.
In Figure 3.2 the MAGMA version of GRASP is depicted.
The instantiation of the strategy in each tuple for GRASP is the following;:

e Sy is a greedy random constructive strategy;
e S; is a simple local search strategy implementing hill climbing;
e S, stores the current best solution.

Coordination among agents composing GRASP can be defined by specializing the
LTS given in Section 3.4. We always suppose that agents’ models are instantiated by
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an initialization process that we call INIT, except when explicitly stated that (a part
of) the model is instantiated by a L3-agent. INIT sends a message inst containing all
the information needed by the agents.

The coordination model for the L0O-agent is the following:

o WAIT receive(ilsﬁ,INIT) READY

E S
e READY "*°28(%0) noMPLETED

send(sol,L1-agent)

e COMPLETED WAIT

The coordination model for the L1-agent is the following:

receive(sol,L0—agent)

e WAIT — READY

E S
e READY “*°'8(5") coMPLETED

send(impr.sol,L2—agent)
sl

e COMPLETED WAIT

Finally, for the L2-agent the coordination model is:

receive(sol,L1—agent)

e WAIT — READY

E S
o READY “X°2$(S) oMpLETED

e COMPLETED — WAIT

3.5.2 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) is a well known population-based metaheuristic for
designing algorithms for COPs [47, 48, 49]. The inspiring idea behind ACO is the
foraging behavior of real ants and the way they communicate. Real ants deposit
a pheromone trail while they are walking and select their direction in a stochastic
way. The higher the pheromone value on a path, the higher the probability the
ant chooses that path. Artificial ants are simple agents that construct a solution
by choosing the next component in a probabilistic way (function of the pheromone).
In ACO, pheromone is a mean to communicate good solution components. Several
implementations of ACO have been proposed, often with different choices for the
construction rules and the way to update pheromone trails [24, 49, 78, 192, 210, 212].

A generic ACO algorithm is sketched in Algorithm 14.

In Figure 3.3 the MAGMA specialization of ACO is depicted: we have N, LO-
agents (the ants) providing initial solutions by using a constructive procedure biased
by pheromone trails. For brevity, we will indicate with T the matrix of pheromone
values. N, L1-agents perform local search and one L2-agent updates T. The last piece
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Algorithm 14 Ant Colony Optimization
while stopping criterion not satisfied do
Construct a set of solutions S = {s1, $2,...,5m} by using pheromone trails and
heuristic information
Apply local search to every solution in S
Update pheromone trails

end while
Pheromone Trails
LEVEL 2 Update
LEVEL 1 Local Search
Pheromone-based
LEVEL O (XXX Construction

Figure 3.3: The Multi-level architecture version of ACO with local search.

of information (new pheromone values) is then used again by LO-agents to construct
new solutions. We observe that in this case the communication is also from the third
level to the first and this means that the process is self-adapting, as a feedback loop
involves the initial and the final steps.

The instantiations of the strategy in each tuple for ACO are the following:

e S) is a probabilistic constructive procedure;

e S; can be any trajectory method;

e Sy: L2-agent stores the current best solution and update pheromone trails.
The coordination model for the LO-agent ¢ (: = 1,...,N,) is the following;:

ive(T,INIT
o waTT VTN peapy

the first iteration is performed on the basis of the initial values for pheromone

receive(T,L2—agent)

o WAIT READY
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after the first iteration the values are given by the L2-agent. Observe that it is
not possible that both the transitions from state WAIT are active at the same
time.

E S
o READY “*°°U8(50) coMpLETED

d(sol,L1— t;
e COMPLETED “Cd(sotLiragents) oy rp

The coordination model for the L1-agent i is the following:

receive(sol,L0—agent;)

e WAIT — READY

E S
o READY **°US(5V) coMpLETED

send(impr.sol , L2—agent)

e COMPLETED — WAIT

Finally, for the L2-agent the coordination model is:

receive([s1,L1—agi],...;[sn,L1—agn])

e WAIT_FORALL READY

E S
o READY “*°°U8(52) novprETED

send(new T,Lofagl,...,LofagNa)

e COMPLETED WAIT FOR_ALL

3.5.3 Iterated Local Search (ILS)

Tterated Local Search (ILS) is a simple but powerful metaheuristic algorithm [208,
209]. It applies local search (or a more general trajectory method) to an initial
solution until it finds a local optimum; then it perturbs the solution and restarts local
search from the perturbed state. The importance of the perturbation (change in the
solution) is obvious: a very small change in the solution could not make it possible
to escape from the local optimum basin of attraction; on the other side, a too strong
modification can be comparable to a simple random restart. In order to accomplish
these requirements, several criteria have been adopted, most of which use the history
of the search. A very simple version of ILS is described in Algorithm 15.

The design of ILS algorithms has several degrees of freedom in the choice of the
initial solution, perturbation and acceptance criteria.

In the MAGMA framework, ILS can be described as follows (see Figure 3.4): one
L0-agent provides an initial solution (either randomly, or heuristically generated),
then it stops its activity. At LEVEL-1, one solution improver agent applies a local
search algorithm to the solution and, when it meets a local optimum it stops, waiting
for a new solution to improve. At LEVEL-2 the agent keeps track of the search process
of the local search agent and, when it stops, it evaluates the new starting solution as
a modification of the current one. Observe that, in this case, there is a continuous
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Algorithm 15 Iterated Local Search
Generate initial solution s
Execute LS from an initial state s until a local optimum s* is found

while stopping criterion not satisfied do
Perturb s* and obtain s’

Execute LS from s until it finds a local optimum s*

On the basis of an acceptance criterion decide whether to set s* + s*
end while

LEVEL 2 Perturb Solution
A
A
LEVEL 1 Local Search
A
LEVEL O Initial Solution

Figure 3.4: The Multi-level architecture version of ILS.

communication between LEVEL-1 and LEVEL-2, while LEVEL-0 participates just
for the initialization, or for a random restart! (not considered in Figure 3.4). It can
be observed that the structure of ILS is very similar to the structure of GRASP.
However, the level-2 agent in ILS is much more intelligent than that of GRASP: in
fact, it should guide the perturbation of the level-1 agent toward unexplored (and
promising) areas.

The instantiations of the strategy in each tuple for ILS are the following;:
e Sy is a randomly, or heuristic-based constructive procedure;
e S is any trajectory method;

e S; is such that the LEVEL-2 agent stores the current best solution and perturbs
the solution returned be the Ll-agent.

The coordination model for the LO-agent is the following:

receive(inst., INIT)
—

e WAIT READY

1Random restart can, of course, be added to every approximate algorithm.
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E S
o READY “*°°U8(50) noMpLETED

send(sol,L1-agent)
—

e COMPLETED WAIT

The coordination model for the L1-agent is the following:

receive(sol,L0—agent)

e WAIT — READY

E S
o READY “X°SY) oMPLETED

send(impr.sol, L2—agent)

e COMPLETED — WAIT

Finally, for the L2-agent the coordination model is:

receive(sol,L1—agent)

o WAIT READY

Execute(S2)
e READY — COMPLETED

send(pert.sol,L1—agent)

e COMPLETED WAIT

3.5.4 Memetic Algorithms

In this section, we propose the application of the MAGMA framework to Memetic Al-
gorithms (MAs) [158]. We include in this category genetic algorithms which apply also
local search, in a way similar to ACO plus local search. In a MA (see Algorithm 16),
an initial population of solutions is generated; then every solution is improved by
applying local search. The resulting new population cooperates and/or competes
to produce a new population. The cooperation is a way to exchange information
among individuals and it can be implemented as genetic operators like mating and
crossover; the competition can be implemented with the selection genetic operator or
more elaborated mechanisms.

A MA in MAGMA is described as follows: many LO-agents generate the initial
population of solutions. Each solution can be generated either randomly, or by means
of a constructive procedure. Ll-agents take the solutions from the lower level and
improve them by using local search (either some steps of a local search algorithm, or
until they reach a local optimum). At LEVEL-2 we have one agent whose task is to
generate new solutions by applying recombination and mutation operators. Then the
new population is produced by applying cooperation or competition operators. The
new population is directly given as input to LEVEL-1. Figure 3.5 shows the multi-
level architecture for a generic MA. Note that, since the L2-agent iteratively receives
the solutions from all the Ll-agents, applies cooperation and competition operators
and sends the new solutions to the L1-agents (one for each agent), we represented this
one-to-many communication by including the L1-agents in one single component.

The instantiation of the strategy in each tuple for MA has some similarities (at
least for the first two levels) with ILS, with more than one agent per level (this appears
also from the Figure):
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Algorithm 16 Memetic Algorithm
Generate initial population S
while stopping criterion not satisfied do
Apply local search to every individual s € S
Apply cooperation operators to S and obtain S’
Apply competition operators to S’ and obtain S"’
S« S"

end while

LEVEL 2 Cooperation/Competition

A

LEVEL 1 QL‘E Local Search

Generate
eooo Population

LEVEL O

Figure 3.5: The Multi-level architecture version of Memetic Algorithms.

e Sp: constructive procedure (e.g., random, heuristic, etc.), implemented by a
population of LO-agents;

e S;: trajectory method, implemented by a population of L1-agents;

e S;: the L2-agent evaluates the population and applies recombination, mutation
and selection/competition operators.

The coordination model for the L0-agent ¢ (¢ = 1,..., P, where P is the population
cardinality) is the following:

o WAIT receive(ils;.,INIT) READY

Exec S
o READY 8(50) ooMpLETED

send(I;,L1—agent;)
e COMPLETED —_— WAIT

The coordination model for the L1l-agent i is the following:
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receive(indiv,LO—agent;)
—

e WAIT READY

Execute(St)
e READY — COMPLETED

send(impr.indiv)

e COMPLETED — WAIT

Finally, for the L2-agent the coordination model is:

T i I, L1— ou[Ip,L1—
o WATT FORALL "covelinEt-agde[Ip.Li=agel) ppypy

Ex S
e READY "S5V ooMpLETED

d([I1,L1—ag1],...[Ip,L1—
o comprTEp ‘dlnEagde Mo Lizagel) Ly rn gop arL

3.5.5 A new algorithm: Guided Restart ILS

After the description of well known metaheuristics in MAGMA, we briefly show how
MAGMA can be used to design a very simple new algorithm. In the following example,
we do not claim to describe a brand new algorithm, but we rather aim at showing
how to combine available algorithmic components and strategies.

If we consider ILS in the MAGMA framework, we observe three communication
arrows: one from the LO-agent which provides the initial solution to the Ll-agent.
The remaining two arrows show the communication between L1-agent and L2-agent
(local search and perturbation cycle). We note the absence of an arrow from LEVEL
2 to LEVEL 0, which characterizes ACO and other algorithms which exploit the
search history to bias the initial solution construction. Therefore, we can add an
arrow from the L2-agent to the L0-agent and enrich the strategy of the L2-agent by
a diversification mechanism based on the search history. For instance, the L2-agent
may accumulate statistics on the frequency of a list of recent solutions and bias the
restarting process?.

We implemented this diversification mechanism and compared its performance
with respect to simple random restart ILS. On large MAXSAT instances the guided
restart enables the algorithm to reach the best known solution with higher frequency
than ILS with random restart.

Guided Restart ILS (GRILS) is based on basic ILS plus a restarting mechanism
which makes use of the search history of previous restarts and the best solution found.
The L2-agents keeps a list of solutions composed of the most recent k initial solutions
and the best solution found since the beginning of the algorithm. The algorithm has
been applied to tackle large MAXSAT problems, where solutions are represented by
assignments to binary variables.

The restart list is used to compute a vector of probabilities which bias the con-
struction of the initial solution for the restart. A simple random restart would use

2Interesting diversification strategies developed for ACO can be useful also for the other meta-
heuristics can be found in [22].
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Table 3.1: Random Restart ILS vs. Guided Restart ILS. The best solution value
found and the percentage of runs returning that value are reported.

Instance | Best known value | RRILS | GRILS

number (unsat. clauses)
inst_1 309 34% 38%
inst_2 316 6% 8%
inst_3 315 20% 28%
inst_4 315 34% 56%
inst_5 315 14% 20%
inst_6 306 36% 44%
inst_7 315 20% 12%
inst_8 317 0% 12%

a probability vector with all the entries fixed to 0.5, i.e., every variable has proba-
bility 0.5 to be assigned to 1 in the new solution. Our aim is to bias the solution
construction in favor of solutions which are likely not to belong to already explored
regions (diversification). For each variable z;, the frequency fregq; of assignments to 1
is computed. This frequency is used as the probability to have the assignment z; =0
in the new initial solution. Therefore, the higher the frequency of ones in the last &
restart solutions, the lower the probability of having the same assignment to z; in the
new initial solution. This diversification mechanism is counterbalanced by considering
also the best solution found xPest = (ghest gbest gbest) to compute the probabil-
ity vector. The frequency freg; is incremented if 2P°* = 0 and decremented for the
opposite assignment. Therefore, the probability vector is slightly moved toward the
current most promising region (in the spirit of path relinking [89]).

Preliminary results on large random MAXSAT instances show that GRILS finds
the best known solution with higher frequency than ILS with simple random restart.
The length of the list of the last recently visited solution has been set to 10. GRILS
parameters (e.g., k) have not been tuned by means of an adaptive procedure, therefore
the performance of GRILS can be further improved. In Table 3.1 results concerning
MAXSAT instances with 1000 variables and 10000 clauses are reported. For every
instance, we report the best solution value found by the algorithms (which is also
the best solution known, at our knowledge) in terms of number of unsatisfied clauses.
For each algorithm we show the percentage of runs which returned the best solution
value. As we can observe, GRILS returns the best known value with higher frequency
than RRILS in all but one instances. For one instance GRILS was also able to find a
better solution than RRILS. The algorithms run 50 times for each instance and they
have been stopped after 60 seconds®.

3Instances can be retrieved from
http://rtm.science.unitn.it/intertools/sat/benchmark.html
4They run on a Pentium III at 500 MHz, with 256 MB of RAM and 512 KB of cache memory.
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3.5.6 Cooperative Search

In this section we show and discuss the definition of cooperative search algorithms
in MAGMA. We will note that the level-3 agents are particularly important for the
integration and cooperation of different problem solving strategies.

Cooperative search [6, 41, 111, 113, 203, 218, 219] consists of a search performed
by agents which exchange information about states, models, entire sub-problems,
solutions or other search space characteristics. Agents can be either homogeneous
(implementing the same algorithm) or heterogeneous (different algorithms).

We refer to [111] for the definition of cooperative search: “cooperation involves
a collection of agents that interact by communicating information [...]”. There-
fore, the main characteristic of cooperative search is the information exchange among
agents during the search process. Cooperative search goes beyond the combination
of metaheuristics, as it encompasses the integration of complete techniques (e.g., in
multi-objective optimization), of mixed techniques (e.g., local search in constraint
programming [35, 65, 171]). Moreover, in the field of Distributed Problem Solving,
the subdivision of a problem in subproblems solved by cooperating agents is a typical
issue. In the following we will limit our discussion on cooperative search achieved
by the combination of different metaheuristics. We also give an example of the inte-
gration of metaheuristics with complete algorithms, to show that MAGMA can also
describe hybrid algorithms.

We can distinguish some kinds of cooperative search depending on the model of the
problem used by the agents and the type of information they exchange. Cooperating
agents can either have the same model of the problem or they can have different
models. In the latter case, some agents may also have models representing parts
of the problem at hand (subproblems). Concerning information exchange, agents
can exchange complete or partial solutions. Complete solutions represent a point in
the solution space, whereas partial solutions represent structured areas of the search
space.

Also, level-3 agents can identify promising solution building blocks used to feed
other metaheuristic algorithms. In addition, a notion of distance among solution is
essential in many cooperative search algorithms. The level-3 agents are devoted to
compute this distance.

Moreover, information can be positive or negative. In the former case, (partial
or complete) solutions are exchanged if they are estimated of good quality, or if
they are considered hints for promising areas of the search space. In the latter case,
information is used to avoid visiting states or areas of the search space which will
not lead to optimal (or good) solutions (the most prominent example of negative
information is given by nogoods [197]).

Typically, cooperative search algorithms are given by the parallel or interleaved
execution of search algorithms. The algorithms can be different or they can be in-
stances of the same algorithm working on different models or running with different
parameters setting. What characterizes the cooperation is the type of information
exchanged and how it is exploited by the agents.
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The usefulness of the multiagent metaphor emerges when considering design issues
like: synchronization, communication, information filtering and implementation. A
meaningful example of cooperative search in a multiagent system is reported in [41]: in
addition to search agents, there are referees agents whose work is to filter information.
This architecture permits to develop separately search agents (focusing on search
algorithms), agent which collect and filter (evaluate) information, communication
mechanisms and policies.

It is important to mention that cooperative search algorithms (systems) show their
effectiveness and efficiency even if they are sequentially implemented. This means
that improvements arise from information exchange and not only from the parallel
implementation [130, 139].

Cooperative search algorithms can be described in MAGMA by appropriately
defining one or more than one LEVEL-3 agents which rule and supervise the infor-
mation exchange. Since at each level the agents describing the algorithms have a well
defined interface, solutions and other pieces of information can be easily exchanged
under the coordination of a fourth level agent. Moreover, the definition of new co-
operative search algorithms is quite straightforward. Indeed, as most metaheuristics
algorithms can be defined in MAGMA with three levels, the cooperation of two or
more metaheuristics is achieved by adding a LEVEL-3 agent.

Combining metaheuristics on the same model

When different metaheuristics tackle the same problem they usually search on different
landscapes, or the explore the same landscape with a different strategy. Empirical
results (see, for instance, [71]) show that some algorithms (agents) perform better
than others on particular kinds of problems, while they are outperformed on other
problems. It is conjectured that this depends upon the agent ability to exploit the
fitness landscape characteristics. Among such properties are: ruggedness, number of
local optima, distribution of local optima and topology of the basins of attraction [118,
144, 182, 206]. The choice of fitness function and operator defines such characteristics
and it is reasonable that the combination of searches on different fitness landscapes
(derived from the same original problem) can smooth the problem hardness (or, at
least, effectively face it).

As an example of a cooperative search algorithm we describe the combination of
a population based algorithm (memetic) with GRASP.

Suppose we have a system composed of a Memetic Algorithm (MA) collaborating
with GRASP. Both metaheuristics have been already described in MAGMA, respec-
tively in sections 3.5.4 and 3.5.1. Since the algorithms have a different strategy to
explore the state space, the combination of them may hopefully result in a more
effective algorithm. The aim of cooperative search is to let the two metaheuristics
communicate and exchange results. In particular, we suppose that in every new gen-
eration of MA, or whenever MA needs diversification, we insert the kg best solutions
found by GRASP. Vice versa, suggestions for building the restricted candidate list of
GRASP are derived by the best individuals of the MA. For instance, with a certain
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LEVEL 3 Coordination and information exchange
LEVEL 2 Cooperation/Competition Store best k gsolution
LEVEL 1 ®0060 | ,casearch Local Search
LEVEL 0 0664 Generalte Greedy Randt?mlzed
Population Construction
Memetic Algorithm GRASP

Figure 3.6: The Multi-level architecture version of Cooperative Search.

frequency (parameter of the algorithm) GRASP constructs the candidate list with an
evaluation function which depends on the solution component frequency of the best
kara individuals found by the MA and the heuristic.

L0, L1 and L2-agents, are those described in the previous sections for MA and
GRASP. Observe that the strategy of the L2-agent of GRASP has been modified
in order to enable it to maintain the kg best found solutions, instead of only the
best one. The tuples associated to these agents represent the model of an L3-agent
who supervises and coordinates the information exchange. The strategy Ss defines
the frequency of the solution exchange, builds the new population for MA and the
restricted candidate list for GRASP (see figure 3.6). Its coordination model is defined
as follows:

receive(si,...,skg ,L2—GRASP)
—

e WAIT READY

receive(pop.,L2— M A)

e WAIT READY

E S
READY “*°8(5%) coMpLETED

send(cand.list,LO-GRASP)
—

COMPLETED WAIT

send(new pop.,LO—MA)
—

COMPLETED WAIT

The previous algorithm is an example of the cooperation of two different algorithms
working on the same model, but searching with different strategies.
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In the following example we show how MAGMA can also describe cooperative
search algorithms composed of complete and approximate algorithms, working on
different problem models.

Large Neighborhood Search

It is generally recognized that in local search algorithms the larger the neighborhood
to explore, the higher the probability of finding better solutions, but the higher the
computational effort needed to explore the neighborhood. Indeed, frequently large
neighborhoods are just randomly sampled and not exhaustively explored. Complete
techniques can be effectively integrated with local search in the exploration of large
neighborhoods, resulting in a technique usually referred to as Large Neighborhood
Search (LNS) [201].

The description of LNS is beyond the scope of this work and we just sketch the
basic steps:

1. Construct initial solution through any incomplete algorithm.

2. Define a neighborhood N} by selecting k variables among the n composing the
solution.

3. Exhaustively explore N and find a solution s’ locally optimal w.r.t. N} (i.e.,
find the optimal solution of the subproblem Py, ).

4. Go to step 2.

Suppose that we want to solve a Vehicle Routing problem where we have n trucks
each starting and ending its tour in a depot. The trucks have to visit m customers
within a given time window at a minimum cost. The cost is associated to each
arc in the corresponding graph. Clearly, the problem can be complicated by many
side constraints like truck capacity, union contract regulations, maximum length of
each path etc. However, starting by this basic problem, we can intuitively describe
a LNS framework. Suppose we have found a solution by using a local search or
metaheuristic algorithm. We fix all routes but one (or two) and we optimally solve
on the free variables a Travelling Salesman Problem with Time Windows (TSPTW).
Clearly, the TSPTW is NP-hard, but if we consider small instances, there are very
efficient methods that can be used to find the optimal solution [66] (by exploring a
large neighborhood).

LNS can be defined in MAGMA as the cooperation of a complete solver (working
on a subproblem) and a local search-based metaheuristic, for example ILS. In Fig-
ure 3.7 a very simple LNS is represented in terms of MAGMA levels. An L3-agent
coordinates two algorithms: the one solving the subproblem (Figure 3.7:left) and
the one providing the first solution (Figure 3.7:right). We suppose that ILS (imple-
mented as described in Section 3.5.3 with three agents), provides the first solution to
be improved by means of Large Neighborhood Search.
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LEVEL 3 Coordination (Agent A—coord)

Perturb Solution (Agent L2-ILS)

I [

LEVEL 1 Initial solution

LEVEL 2

Solve subproblem
LEVEL 0 Initial solution
(Agent A-sub)

Figure 3.7: MAGMA version of an instance of Large Neighborhood Search.

The L3-agent receives the first solution from the agent of level-2 of ILS (L2-ILS)
and defines N}, by fixing k out of n variables. The L3-agent communicates N} to
agent A-sub (the subproblem solver) at level 0 (arrow 2) by instantiating for it the
subproblem model My in its tuple. Finally, the solution provided by A-sub is returned
to the coordinating agent which again decides which variables to fix. This process
can be iterated until a termination condition is reached. The L2-ILS agent can also
be involved, from time to time, to perturb the solution provided by the agent A-coord
(arrow 4) and to activate a further ILS phase.

We did not specify how A-coord defines N}, since many choices are possible. For
instance, the neighborhood can be selected by choosing critical variables (e.g., bot-
tleneck resources in scheduling problems).

Note that the ILS agents and the A-sub agent should not be aware of being part
of a complex search strategy. They perform their usual tasks. Thus, the L3-agent
is needed to enable the information exchange in a transparent way for lower level
solvers.

The LTS corresponding to ILS is the following:

LO-agent of ILS:

receive(inst.,INIT)
e WAIT — READY

Execute(So)
e READY — COMPLETED

send(sol,L1-agent)
—

e COMPLETED WAIT
L1-agent of ILS:
o VAIT receive(sol,_)LO—ag@nt) READY
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E S
e READY “**U(51) coMpLETED

send(impr.sol,L2—agent)
soly

e COMPLETED WAIT

L2-agent of ILS:

receive(sol,L1—agent)
—

e WAIT READY

receive(sol,A—coord)
—

o WAIT READY

Execute(S2)
READY — COMPLETED

send(impr.sol,L1—agent)
soly

COMPLETED WAIT

send(impr.sol,A—coord)

COMPLETED — WAIT

A-sub:

receive(inst,A-coord)
—

o WAIT READY

Execute(Sa-sub)
—

e READY COMPLETED

send(sol,A-coord)

e COMPLETED — WAIT

A-coord:
recei \,L2-ILS
o WATT "eeivelsel ) READY
o WAIT receive@;A—sub) READY

E S -Coor
READY " XeCutelSg-coora) yypr prEp

send(model,A-sub)
—

COMPLETED WAIT

nd 1,L2-1LS
coMPLETED “"¢(ol>1LS)

WAIT

A plethora of variants of the proposed algorithm is possible, and they can be
described in MAGMA by changing S; at each level and by introducing other agents

in the architecture.
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3.6 Related work

A multiagent perspective of metaheuristics has relations both with object-oriented
frameworks for the algorithms implementation and Distributed Artificial Intelligence
(DAI). In this section we briefly discuss these issues.

Although MAGMA has been presented as a conceptual framework for metaheuris-
tics, it can also be used as a framework for the algorithms implementation. In the lit-
erature, some implementation frameworks for local search-based metaheuristics have
been introduced [5, 35, 44, 63, 133, 147]. They all share the same aims: on the one
hand, fast prototyping and implementation, on the other hand, systematic compar-
ison of algorithms. There are different choices for the implementation, but most of
them provide a basic structure of two levels®: construction of the initial solution and
further improvement. In [44] an interesting hierarchical structure of object-oriented
classes goes into the direction of MAGMA (even though restricted to local search-
based metaheuristics). The authors define four levels:

1. Basic components (I/0, state, moves)
2. Local Search problem elements (State manager, neighborhood explorer)

3. Local search-based metaheuristics (Iterative Improvement, Tabu Search, Simu-
lated Annealing, etc.)

4. Local Search solving strategy (Simple solver, Token-ring solver, etc.)

When the fourth level of this architecture composes different algorithms, it can be
interpreted as our LEVEL-3.

Note that the model component here are put altogether in the first level, while in
MAGMA we allow to have different models/components in different levels.

Research on DAT and Multiagent Systems covers several theoretical and applicative
topics. The relations with the multiagent approach for metaheuristics emerge mainly
in distributed search, where agents cooperate to solve a search problem [134, 175, 236].
The basic approach consists of subdividing the search space, assigning to each agent
a subspace and let each agent “locally” search in its own subspace. Protocols and
algorithms have been developed to maintain consistency and to combine the solutions
provided by the agents into a complete solution. Several cooperative techniques have
also been proposed and studied, beside different synchronization methods. Even if
distributed search deals with distributed implementation of classical complete search
algorithms, concepts and researches about the formalization of communication and
cooperation among (heterogeneous) agents may be effectively included in the special-
izations and implementations of MAGMA.

5As it can be expressed with our framework terminology.
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3.7 Conclusion

In this chapter, we have introduced a multi-level architecture for describing and im-
plementing metaheuristics. The architecture is organized in four levels: the first is
devoted to the solution construction, the second to the improvement of the solution,
the third to the implementation of long term strategies for intensification and diversifi-
cation and the fourth is needed for coordinating lower levels. Algorithmic components
are encapsulated in software agents, for which a clear interface is defined along with
a coordination model.

This chapter concludes the general presentation and discussion on metaheuristics.
We have first given an overview of the state of the art in Chap. 2, then we have
introduced an infrastructure useful for implementation, in this chapter. In the fol-
lowing, we will concentrate on the application of metaheuristics to the Satisfiability
Problem (SAT) and the Maximum Satisfiability Problem (MAXSAT). In the next
chapter we will describe the design and implementation of two metaheuristics, for the
first time applied to MAXSAT. Furthermore, in the subsequent chapters, we will deal
with the important issue of the relation between problem structure and metaheuristics
behavior.
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Chapter 4

Metaheuristics Applications
to MAXSAT

In the previous chapters, we have presented and discussed metaheuristic algorithms,
without referring to a particular application. In the following chapters, we will discuss
some aspects of the application of metaheuristics to the Satisfiability Problem (SAT)
and the Maximum Satisfiability Problem (MAXSAT).

In this chapter we will first briefly present the metaheuristics applied so far to
MAXSAT. Then we will describe two new applications, namely ACO and ILS. For
each of them, we will discuss the scenarium of design issues, motivations for our
choices, parameter setting procedures and experimental results. The results achieved
with ACO are of good quality, though not competitive with ILS in terms of efficiency.
On the other side, ILS performance is extremely good, especially for large unweighted
MAXSAT instances.

This chapter aims at showing the design process of metaheuristics and it focuses
on the algorithms themselves, rather than the analysis of the results and the study of
the impact of problem structure on metaheuristic performance. This latter issue will
be the subject of Chap. 5 and 6.

4.1 The MAXSAT Problem

MAXSAT is an optimization version of the Satisfiability Problem (SAT). SAT belongs
to the class of NP-complete problems [79] and can be stated as follows: given a set of
clauses, each of which is the logical disjunction of k > 2 literals (a literal is a variable
negated or not), we ask whether an assignment to the variables exists that satisfies
all the clauses. MAXSAT is an NP-hard problem and can be stated as follows: given

e n boolean variables z1,%2,...,T,, =; € {0,1}Vi=1,2,... n;

e 2n literals: 1; is a variable (z;) or its negation (—z;);

79
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e m clauses ¢j, j = 1,...,m, where ¢; is the disjunction of % literals, l;, V [;, V
Vi
e optionally, a set of m weights wy, ..., w,, associated to the clauses;

o F =31 wjp(c;), where p(c;) = 1 iff the clause ¢; is satisfied by the assign-
ment. If the weights are not defined (i.e., the instance is unweighted) we set
w;=1Vj=1,...,m;

the objective is to find an assignment to the variables such that it maximizes F'.

Among the best complete algorithms for MAXSAT we just mention resolution
and backtracking [26] and branch & cut [125]. The drawback of complete techniques
is that they can generally solve only relatively small instances. In order to face
larger instances, metaheuristics are a good balance between efficiency and quality of
solutions, as they generate suboptimal solutions in an amount of time compatible
with practical applications.

4.2 Metaheuristics for MAXSAT

A first way to design local search algorithms to solve MAXSAT is to adapt well known
local search techniques developed for SAT. The most effective are GSAT [200, 120],
WalkSAT [199, 142] and their variants [115, 100, 83, 84, 190, 191]. These algorithms
select from a candidate set (the neighborhood) a variable which, if flipped, would
increase the objective function the most. Main differences among algorithms are in
the definition of neighborhood and in the heuristics they use for selecting the variable
to flip. More formally:

o N(s) = {z | Hamming_distance(s, z) = 1}.
o s(+Y) = Heuristic.Choice(N(s)).

Some promising results have been obtained with different neighborhood structures
in [243, 241, 190, 191].

Performance and behavior of such algorithms have been widely studied [198, 74,
178, 83, 84, 115]. It has been noticed that the search landscape, implicitly defined by
the choice of the evaluation function and the neighborhood, is composed of large areas
of solutions with a similar objective function value, called plateaus. It is generally
recognized that, for SAT and MAXSAT, plateaus constitute a difficulty at least as
hard as simple local optima. Local search generally reaches plateaus quickly, but once
there, it becomes less effective, since the information gathered from the objective
function value of neighboring solutions cannot guide it to a better region. Thus,
more complex strategies are required; for example, by introducing a kind of memory
in the search, or by dynamically changing the search landscape, or by changing the
neighborhood structure.
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4.2.1 History-based heuristics

Simple local search algorithms produce a Markov chain [58], as they follow a tra-
jectory in the state space whereby the successor state is chosen depending only on
the incumbent one. This implies the need of a restart after a local optimum, or the
maximum allowed number of (non-improving) moves are reached. When good local
optima have a small basin of attraction (i.e., they are reachable from a very small
number of initial states), restart can be almost useless. But, if the local search mem-
ory is extended in such a way that it can recall a portion of past visited states, it can
explore larger regions and avoid to get trapped in local optima.

A soft way of designing history-based searches is obtained by breaking ties (among
variables which lead to the same objective function value increase) in favor of least
recently flipped variables [115]. A stronger and more effective way is to forbid the last
T flips; this leads to the well known metaheuristic called Tabu Search [90]. In [13, 14]
the effectiveness of a tabu search approach for MAXSAT is shown. In this case, the
dynamical system equations which define local search can be stated as follows:

e N(st) = {z | Hamming_distance(st,z) = 1}.

o Allowed(s) = N(s') — {w |w can be obtained from s’ by applying a flip move
performed less than T moves before.}!.

o s = Heuristic_Choice( Allowed(st)).

Forbidden moves are kept in a list of length T, which is called tabu list. The longer
T, the greater the number of not allowed moves. The tabu length tunes the balance
between intensification and diversification: when T is small, once the search has
reached a local optima (or a plateau) it continues to explore a small localized region;
on the other hand, when T is large, the search is forced to explore a larger region,
since many previous states are forbidden. Since the trade-off between intensification
and diversification is crucial for local search, in [13, 14] a dynamic tabu length scheme
is proposed. T is increased when the states visited by the search are repeated, and it
is decreased when repetitions disappear for a sufficiently long period?.

4.2.2 Dynamically changing landscapes

The landscape where local search moves is defined by the objective function and by
the neighborhood structure. If local search is trapped in a local minimum, or it is
wandering in a plateau, it can be redirected to other regions by changing the landscape
shape. For example, a way to escape from a local maximum is to artificially decrease
its value, until any neighbor becomes better. In MAXSAT this effect can be obtained
in different ways. A very effective application is Guided Local Search [152], where the
search is guided by varying weights associated to clauses. When the search does not

1The author set 1 <T < n — 2 to prevent Allowed(s) from being empty.
2The algorithm proposed is more elaborated than the description we have given, but a detailed
analysis is not in the scope of this discussion.
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produce better solutions, weights associated to unsatisfied clauses are increased and
thus the search is gradually forced to try to satisfy those clauses. This method was
first introduced in [72, 73] as an improvement of GSAT applied to SAT problems.

A similar approach is the Discrete Lagrangian-based search Method [229], which
is a discrete version of the usual Lagrangian method for continuous optimization.
The basic idea is that an auxiliary coefficient is added to each clause weight and it
is increased if the clause is not satisfied. This method differs from the previous one
mainly in the coefficients update and in the local search used.

It is worth to mention the use of non-oblivious functions [13, 14, 15]. Since local
search is directed by the objective function and a state can be a local optimum for an
objective function, but not for another one, non-oblivious functions are introduced
with the aim to escape from local optima. Non-oblivious functions weight in different
ways satisfied clauses, depending on the number of literals which satisfy them, by
favoring high redundancy. In [13, 14] it has been shown that a first search phase with
non-oblivious function followed by a second phase with the usual (oblivious) objective
function, leads to very good performances.

4.2.3 Variable Neighborhood Search

The search landscape can be modified also by varying the neighborhood structure.
When the search reaches a local optimum, the neighborhood is enlarged or simply
changed and the search can continue, hopefully toward a better local optimum. This
process is the basic structure of a the Variable Neighborhood Search metaheuristic
(VNS) [104, 102]. To apply VNS to MAXSAT it is first required the definition of a
set of neighborhoods N (s):

z € Ny(s) ifft Hamming_distance(s,z) =k
The high-level algorithm is sketched in the following:

1. Initialize: k < 1, generate initial solution sg, Sopt <— S0, Zopt < F(0).

2. Repeat local search from a randomly chosen state s; € Ng(so) until a local
optimum s* is reached.

3. If F(s*) > zopt then set sopt < 8%, 2opt < F(s*), k < 1; else set k < k + 1 and
goto step 2.

The algorithm requires also stopping conditions, the maximum value for k and it
can be enhanced by more elaborate neighborhood managing schemata.

4.2.4 Constructive methods

Initial solutions are often randomly generated and so the success of search is due only
to the search strategy. Nevertheless, more complex solution construction techniques
can be adopted, with the aim to let the search start at a state in the basin of attraction
of a good local optimum.
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An interesting combination of constructive methods and local search is the Greedy
Randomized Adaptive Search Procedure [186, 187]. An initial solution is constructed
by using a combination of heuristics and then it is improved by local search. Con-
structive heuristics for MAXSAT incrementally assign values to variables in a greedy
way, making at each step the assignment which decreases the total weight of not yet
satisfied clauses the most. There are also other possibilities, based on different criteria
(e.g., the number of positive and negative literals, the number of literals which satisfy
a clause, etc.).

Ant Colony Optimization metaheuristic [47, 49, 43, 46] is another powerful exam-
ple of constructive method combined with local search. The construction process is
performed by a colony of agents (ants) which construct solutions by using the colony
past experience and heuristic criteria. After an ant has constructed a solution, lo-
cal search is applied to improve it. A more detailed description of ACO is given in
Sec. 4.3.1.

4.2.5 Population heuristics

For the sake of completeness, it is worth mentioning also population heuristics such
as Genetic Algorithms [93, 154, 28], Memetic Algorithms [158] and the yet cited
Ant Colony Optimization metaheuristic. Population heuristics iteratively generate a
set (population) of solutions, improve and combine them in order to obtain bet-
ter solutions. To our knowledge, only Genetic Algorithms have been applied to
MAXSAT [19, 179], with interesting results about the correlation between the be-
havior of genetic algorithms and problem structure. However, the effectiveness of the
algorithms discussed seems not competitive with the cutting-edge metaheuristics.

As a conclusion for this overview on main metaheuristics for MAXSAT, we outline
some current research trends. Most of the best performing cited algorithms combine
different techniques to achieve an effective trade-off between intensification and diver-
sification. Therefore, it is very important to know why some combinations are effective
and on which kind of instances. To do this, it is necessary to develop formal models of
the basic components of algorithms and analyze their interactions; furthermore, ex-
tensive simulations and deep statistical analyses are required to experimentally verify
hypothesis and to generate new conjectures. Furthermore, problem structures have
to be understood, via empirical analysis and formal models.

4.3 Two new applications
We developed two new applications to MAXSAT by specializing two metaheuristics,

still not applied to this problem?®. We first discuss the application of ACO, then the
application of ILS. After the description of the algorithms and the design choices, we

3This work has been done mainly during the first phase of the European project called Meta-
heuristics Network.
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will show experimental results. The results of ILS are very promising, as also proved
by the experimental results obtained in the Metaheuristics Network project [145].

4.3.1 Ant Colony Optimization

In this section we will describe an ACO algorithm designed for solving MAXSAT
problems.

Ant Colony Optimization has been already introduced in Chap. 2. In this section
we deal with the Ant Colony System algorithm (ACS) [49], a particular instance of
ACO (see Fig.17 for the basic algorithm). In ACS, each ant is initially positioned on
a randomly chosen node of G' and builds a solution by applying a probabilistic rule,
called state transition rule. This probabilistic rule is biased by pheromone values in
such a way that the higher the pheromone on a component/connection, the higher the
probability to be selected. The general rule includes also heuristic information coded
in the function 7, which is combined with pheromone values, such that ants choose the
component /connection depending on the joint value of past experience (pheromone)
and heuristic (7). While building the solution ants “eat” some quantity of pheromone
on the visited components/connections (this is called step-by-step pheromone update).
After every ant has completed a solution, the offline pheromone update is applied to
the components/connections of the best solution found so far, by adding a quantity
of pheromone function of the quality of the solution.

Algorithm 17 High-level description of the ACS algorithm.
Initialize
while stopping criterion not satisfied do
Position each ant in a starting node
repeat
for each ant do
Choose next node by applying the state transition rule
Apply step-by-step pheromone update
end for
until every ant has built a solution
Update best solution
Apply offline pheromone update
end while

Ants construct a solution by probabilistically choosing a node in their feasible
neighborhood; in this work, we define the feasible neighborhood of an ant k as the
set of pairs (variable,value) such that the variable has not yet been assigned a value.
The neighborhood chosen therefore implements the problem constraints that states
that nodes associated to the same variable are not in a same solution. A key point for
the algorithm designer is the choice of graph elements (components and connections)
to which to associate pheromone. In this algorithm we decided to put pheromone on
components. In this case, the amount of pheromone is proportional to the (learned)
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Figure 4.1: Construction graph for a MAXSAT instance with three variables. The
correspondences between nodes and assignments are: (z,1) ¢ z,(z,0) & T, (y,1) <
Y,(4,0) ©7,(2,1) ¢ 2,(2,0) & Z.

desirability of having a particular assignment in the solution. An alternative possibil-
ity is to associate pheromone with connections. Thus, the quantity of pheromone on
the connections between two nodes is proportional to the (learned) benefit of having
the two corresponding assignments in the solution. Moreover, it is also possible to
consider the sum of pheromone values on the edges which connect the candidate node
to all the nodes already in the solution. These different approaches are discussed
in [192].

4.3.2 ACO-MAXSAT Algorithm

The representation used is the following: each assignment (variable,value) is associ-
ated with a node in the construction graph, therefore, for a MAXSAT instance with
n variables, we obtain a graph with 2n nodes (since value € {0,1}). We can label
the nodes with the pair (z;,v;), where z; is a boolean variable (i = 1,...,n) and
v; € {0,1} is the value assigned to the variable. The graph is fully connected. A
solution of the problem is a path of length n, S = ((z;,,v4),--., (i, ,v;,)) such
that for each pair (z;,v;), (z;,v;) € S is &; # x;. This constraint avoids cycles and
inconsistencies in the solution.

Pheromone is deposited on nodes and also the heuristic information is evaluated
for each possible assignment (z;,v;). An ant k constructs a solution in the following
way: for n times, it adds a node to the current path (i.e., it assigns a value to a
variable) by using the pseudo-proportional transition rule; if the ant is in node r, it
chooses the next node s according to the following rule:

_ [ argmazyes,(m{lr@]* - @)?}, ifq < ao (exploitation)
s = . - .
z, otherwise (biased exploration)

where: ¢ is a random number in [0,1], Ji(r) is the set of allowed nodes (given
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the path constructed by ant k till node r) and z is chosen with probability (random-
proportional rule):

[r(2)]* [n(=)]° ;
Prob(Z)z{ Sl 12 € i)

0, otherwise

a, B and gy are parameters of the algorithm.
The step-by-step pheromone update rule erases a quantity of pheromone from the
nodes included in the solution constructed by each ant:

Vant k,Vs € S, : 7(s) « (1 —p) - 7(s) + 70,

where p and 7y are parameters in [0,1].
The offline pheromone update is evaluated according to the following rule:

Vs € Sopt : T(S) <« (1 - 5) : T(S) +&- g(SOpt)a

where £ is a parameter analogous to p and g(Sop) is the normalized value of the
solution Sop¢-

The stopping criterion can be stated, for example, with a maximum execution
time, a maximum number of cycles or the maximum error from the best solution
known.

As heuristic information (quantified by 1) for the solution construction we tried
two different kinds of heuristic: static and dynamic. Static heuristics evaluate the
desirability of an assignment on the basis of some instance properties (e.g., formula
and weights). One among the simplest static heuristic consists of assigning to a
variable the value that enables it to satisfy the greatest number of clauses (or, in
a weighted MAXSAT, the highest sum of weights). Heuristic values n((z,v)) are
computed by counting, for each variable z, the number of clauses in which it is a
positive literal; then we assign to n((z,1)) the weighted sum of clauses satisfied by
that assignment. We proceed in an analogous way to obtain 7((x,0)). The results
obtained with this heuristic were not good; moreover, often the use of 7 is misleading
and it slows down the convergence toward a good solution. On the contrary, dynamic
heuristic led to very good results. A dynamic heuristic changes the values of n during
the solution construction, depending on some criteria. We adopted a heuristic function
like the one defined in [187]: given a not yet assigned variable z, n((z,v)) is equal to
the sum of weights of unsatisfied clauses which become satisfied if z is set to v. In
formulas: n((z:,0)) = 3 ;cp- w; and n((i, 1)) = 3 ;er+ wj, where Ty (resp. rf)is
the set of unsatisfied clauses which became satisfied if z; is set to 0 (resp. 1). The
advantage of this heuristic is obvious: depending on the past choices, 7 is re-calculated
in order to evaluate the most promising remaining assignments. The drawback is in
the execution time, since new values have to be computed at each construction step.
Nevertheless, this heuristic information have been proved very useful and it led to
good results, especially when combined with the pheromone values.
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4.3.3 Parameters setting

Parameters setting in metaheuristics represents one of the most empirical procedures
of the whole implementation process. In ACQO algorithms, parameters are not inde-
pendent and their value is also problem-dependent, but ACO procedures seem to be in
general quite robust [49, 50]: once limited parameter ranges into reasonable intervals,
the overall performance is not strongly affected by parameters variations. However,
the optimization of algorithms requires tuning parameters. In [27] a genetic approach
for parameters setting is presented and there is still room for developing automated
procedures?. The tuning of parameters is an optimization process; it is nonlinear,
because of the relations among parameters and it is multi-objective, since usually we
want to optimize the effectiveness (quality of solution), the efficiency (computation
time) and robustness (good average global performance over all the instances in terms
of the last two objectives). We tackled this problem with a procedure similar to a
gradient ascent algorithm in the space of parameters. First of all, we have to pro-
vide a benchmark problems set: in this case we chose a combination of unweighted
and weighted instances. Then, we run different settings (derived, for example, from
previous works on ACS) on the benchmark set and we select for each parameter py,

a set of values Vi, (h = 1,..., Npgrem)- Thus, the problem is to find an assignment
{(®1,v1);-- -, (PNyaram s UNparam ) }>» Vn € Vi, which leads to a good balance among
effectiveness, efficiency and robustness. We start from a heuristically generated as-
signment {(p1,v9), .-, (DN, aram > ”?Vpamm)} and we iterate the following procedure: at
step h, only parameters p1,...,pp—1 have been assigned and the current assignment
i5 {(P1y 01)s +os PtV 1)s +- s (PR, -« o5 (Pparams 0% )} The algorithm is

run on each instance for every possible value of parameter p,, while the other param-
eters are kept constant. Then, the optimal value v}, is chosen. At the end, we obtain
the assignment {(p1,v7),- .., (Pr,V})s- -5 (PNyaram s UN,aram )} Which is, at least, not
worse than any other partial assignment {(p1,v}),..., (Ph—1,V5_1)s-- (Prs¥3);-- -
(pra,ram ) ’U?Vpamm )}

For the ACS algorithm applied to MAXSAT (thereafter referred to as ACS-
MAXSAT), the parameters are:

e Number of ants.

a and (3, parameters which adjust the relative importance between pheromone
and heuristic.

e p, parameter which controls the amount of pheromone “eaten” away by ants.
e £, evaporation parameter.
e Ty, parameter involved in the step-by-step pheromone update.

® (o, parameter involved in the transition rule.

4 A recent very interesting and promising well-founded research on this topic can be found in [195].
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4.3.4 Experimental Results

In the following we report experimental results, mainly focusing on the parameter
optimization.
Instances from two different sets have been used:

- Random weighted instances (jnh).
http://www.research.att.com/ “mgcr/data/maxsat.tar.gz

- Random unweighted instances (uuf).
http://www.intellektik.informatik.tu-darmstadt.de/SATLIB

Jjnh have 100 variables and a number of clauses which ranges between 800 and 900.
The uuf considered instances have 250 variables and 1065 clauses.

The initial setting is: 10 ants, a = 3 =1, p = £ = 0.01, 79 = 0.01 and go = 0.8.
For each instance we reported either the average error from the optimal solution
(in the case of weighted instances, when the best solution is known), or the best
average solution (in the case of unweighted instances, for which the optimal solution
is not known). Moreover, the average time and number of iterations is reported. The
averages are evaluated over 20 runs and each run is allowed a maximum of 100 cycles.
The algorithm run on a Pentium II at 400MHz, with 512 MB of RAM and 512 KB
of cache memory.

In Table 4.1 results for different values of the number of ants are reported. The
lower the number of the ants, the lower the computational load. Nevertheless, with a
small number of ants the learning process is not effective. The optimal number of ants
depends also on the balance between exploration and exploitation (go), the amount of
pheromone deposited (79 and the amount depending on the solution value) and erased
(p and &). From Table 4.1 we observe that the quality of solutions increases as the
number of ants increases, whilst the time required increases approximately linearly.
As optimal number of ants we choose 10, as the extra computational time required
for 20 ants is not counterbalanced by the improvement in solution quality.

The effect of different values for p can be observed in Table 4.2. The optimal choice
seems to be p = 0.01, because it gives the best average solution quality. Analogous
considerations are valid for £, whose optimal value is 0.01 (see Table 4.3).

Table 4.4 reports the algorithm performance for different combinations of values
of @ and S. For B/a € [0.5,2] the performance is not highly perturbed; if we consider
the quality of solutions, the best ratio is 8/a = 1.5. It is worth observing the first
two columns: (¢ = 1, 8 = 0) + only pheromone trails are used and (a« = 0 ,
B = 1) « only heuristic is used. For weighted instances better solutions are obtained
by using only pheromone trails, but with longer times. On unweighted instances,
only heuristic information seems better. This phenomenon leads to conjecture that
weighted instances are more structured than unweighted ones, thus ants can exploit
this structure and find better solutions. However, the combination of the two sources
of information enables to achieve the best average solution quality.
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Table 4.1: Average error (for wuf instances the number of satisfied clauses is reported),
time and number of iterations for different number of ants. The remaining parameters
are: a=0=1,p=¢=0.01, 9 = 0.01 and go = 0.8

Number of ants
Instance 1 5 10 20
1.025% 0.476% 0.386% 0.331%
jnhl 1.31 6.64 14.18 24.17
85.4 83.1 87.7 72.3
1.290% 0.505% 0.384% 0.344%
jnh201 1.21 6.88 12.74 24.69
79.5 88.7 82.4 76.2
1.526% 0.748% 0.483% 0.421%
jnh301 1.34 7.20 15.43 28.67
84.3 86.5 88.3 83.9
1025.6 1039.35 1042.7 1045.25
uuf250-01 4.03 22.59 42.37 83.15
79.6 88.4 85.7 86.6
1018.85 1031.5 1035.6 1038.5
uuf250-02 3.96 23.78 44.23 85.53
75.6 88.0 84.4 87.0

Table 4.2: Average error (for uuf instances the number of satisfied clauses is reported),
time and number of iterations for different values of p. The remaining parameters

are: 10 ants, a = =1, £ = 0.01, 7 = 0.01 and g9 = 0.8

p
Instance 0.005 0.01 0.05 0.1 0.5
0.389% 0.337% 0.405% 0.477% | 0.704%
jnhl 14.49 13.78 13.37 12.57 10.42
86.3 84.7 79.6 74.95 62.0
0.422% 0.425% 0.423% 0.494% | 0.710%
jnh201 13.78 12.90 13.45 11.82 10.50
85.9 83.1 84.25 73.2 65.4
0.630% 0.517% 0.524% 0.635% | 0.962%
jnh301 15.60 14.43 14.50 15.98 12.30
85.6 82.1 80.3 88.0 67.9
1041.10 1042.3 1040.15 | 1037.75 | 1035.45
uuf250-01 45.04 41.06 36.98 32.59 35.21
87.3 82.7 72.6 64.15 69.25
1029.15 | 1041.10 | 1036.55 | 1033.35 | 1031.70
uuf250-2 31.25 45.04 43.55 35.33 35.61
60.30 87.3 85.6 69.6 70.2
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Table 4.3: Average error (for wuf instances the number of satisfied clauses is reported),
time and number of iterations for different values of £. The remaining parameters
are: 10 ants, a = =1, p=0.01, 79 = 0.01 and ¢o = 0.8

£
Instance 0.005 0.01 0.05 0.1 0.5
0.403% 0.373% 0.433% 0.450% | 0.572%
jnhl 13.39 14.28 14.49 13.45 14.23
80.8 86.4 80.6 80.2 85.9
0.467% | 0.440 % | 0.443 % | 0.537% | 0.595%
jnh201 12.50 13.69 12.51 12.80 12.68
79.0 86.9 77.3 78.4 79.8
0.583% 0.575% 0.654% 0.727% | 0.847%
jnh301 15.25 15.32 14.25 13.95 15.21
85.1 85.5 78.8 77.4 85.4
1042.40 | 1043.05 | 1041.45 | 1040.00 | 1037.90
uuf250-01 40.23 42.63 47.04 42.93 44.21
79.4 84.6 86.4 85.2 88.0
1035.60 | 1036.70 | 1035.50 | 1033.00 | 1031.80
uuf250-02 41.41 45.11 46.40 42.51 43.31
82.1 89.0 89.2 84.4 86.1

Table 4.4: Average error (for uuf instances the number of satisfied clauses is reported),
time and number of iterations for different combinations of a and 3. The remaining
parameters are: 10 ants, p = £ = 0.01, 79 = 0.01 and g¢o = 0.8

o,
Instance 1,0 0,1 1,05 1,1 1,15 1,2 1,3
0.629% | 1.098% | 0.419% | 0.360% | 0.394% | 0.423% | 0.444%
jnhl 14.51 9.89 19.80 13.88 20.61 14.13 13.14
92.5 63.0 85.7 84.3 89.2 84.1 77.0
0.432% | 1.015% | 0.432% | 0.439% | 0.376% | 0.442% | 0.448%
jnh201 13.64 6.41 16.16 13.43 18.72 13.44 14.10
90.9 42.8 73.8 84.9 84.7 82.3 86.0
0.665% | 1.341% | 0.582% | 0.548% | 0.519% | 0.523% | 0.599%
jnh301 15.97 7.80 20.63 15.59 21.42 16.55 16.61
94.5 45.7 85.7 85.9 88.0 89.8 90.0
1005.95 | 1030.45 | 1041.90 | 1043.05 | 1044.40 | 1043.50 | 1043.80
uuf250-01 43.36 19.21 75.70 43.26 79.45 42.47 44.65
96.0 42.8 85.6 85.8 89.4 80.0 83.4
1007.65 | 1023.45 | 1034.15 | 1035.85 | 1036.90 | 1037.20 | 1037.45
uuf250-02 42.72 14.03 76.94 40.69 76.95 42.82 44.05
94.6 31.3 86.7 80.2 86.2 81.3 82.5
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Parameter 79 determines the lowest value for the pheromone [211]. In Table 4.5
we can observe that the most promising values are between 0.01 and 0.05, with a
slightly better performance for 7 = 0.01.

Finally, from Table 4.6 we can assert that go = 0.8 seems to give the best trade-off
between exploration and exploitation.

Concluding, the best parameters setting is: 10 ants, a =1, 8 = 1.5, p = & = 0.01,
70 = 0.01 and g9 = 0.8.

Table 4.7 summarizes first results of ACS-MAXSAT with the optimal parameters
setting.

4.3.5 Ant Colony plus Local Search

In the ACO framework it is included the possibility to apply local search after the
construction of solutions. The basic algorithm is sketched in Alg. 18.

Algorithm 18 ACO plus Local Search high level algorithm.
while stopping criterion not satisfied do
Ants construct a set of solutions S = {51, 82, ..., Snan,. }
Apply local search to every solution in S and obtain a new set S’
Update pheromone trails of S’ by using the solution values of the elements of S’
end while

Local search is applied to each solution provided by the ants and the new so-
lution substitutes the previous one. In this sense, we apply a kind of Lamarckian
update [237], because the new set of improved solutions (population) replaces the
previous one and pheromone update takes place over the new one. This is the usual
way to insert local search into ACO algorithms, however there is also the possibility
to apply a sort of Darwinian update, whereas the solutions improved by local search
are used just to compute the amount of pheromone to add during the pheromone
update phase.

As local search algorithm, we implemented a variant of GSAT, adapted for MAX-
SAT. The basic structure of the algorithm, called MAX-GSAT, is reported in Alg. 19.
The algorithm starts with an initial solution (in this case, provided by an ant) and,
until the termination condition is reached, it “flips” the variable which produces
the greatest 6 = wt — w™, where w™ (w™) is the sum of weights of the unsatisfied
(satisfied) clauses which become satisfied (unsatisfied) after the flip of the variable.
As termination condition we adopted the following criterion: the search stops after
MAXMOVES flips without improvements. M AX MOV ES becomes therefore an
algorithm parameter and, after some trials, we decided to set MAXMOVES =
number of variables.

First results are reported in Table 4.8. As we can observe, local search strongly
improves the algorithm performance. An improved version of MAX-GSAT which uses
also Tabu Search® is under testing. The actual synergy between ACO and local search

51 thank Thomas Stiitzle for making available the source code of a very efficient implementation.
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Table 4.5: Average error (for wuf instances the number of satisfied clauses is reported),
time and number of iterations for different combinations of 7. The remaining pa-
rameters are: 10 ants, a =1, 8 =1.5, p=€6 =0.01 and ¢y = 0.8

70
Instance 0.001 0.005 0.01 0.05 0.1 0.5
0.510% 0.388% | 0.395% | 0.479% 0.596% 0.900%
jnhl 18.26 18.68 20.52 18.27 15.49 10.75
79.0 80.7 87.5 79.2 67.0 46.4
0.496 % | 0.445% | 0.429% | 0.529% | 0.628 % | 0.889%
jnh201 16.82 17.91 19.04 17.62 15.57 10.98
76.5 81.3 86.4 79.8 69.7 49.3
0.782% 0.604% | 0.572% | 0.659% 0.828% 1.240%
jnh301 19.47 20.62 20.35 19.98 18.53 15.12
80.3 85.3 84.6 82.7 75.9 62.2
1039.95 | 1043.15 | 1042.90 | 1040.25 | 1039.00 | 1034.40
uuf250-01 78.51 82.47 73.36 64.30 57.71 43.04
87.8 92.6 82.6 72.3 65.0 48.5
1032.85 | 1037.20 | 1037.95 | 1034.05 | 1031.80 | 1026.05
uuf250-01 79.68 80.92 75.54 64.78 53.31 55.78
89.4 90.6 85.3 73.1 60.0 63.0

Table 4.6: Average error (for uuf instances the number of satisfied clauses is reported),
time and number of iterations for different combinations of gg. The remaining pa-
rameters are: 10 ants, a =1, 8 = 1.5, p = £ = 0.01 and tauy = 0.01

40
Instance 0 0.2 0.4 0.6 0.8 0.95
0.847% 0.652% | 0.493% 0.424% 0.350% 0.405%
jnhl 17.38 19.21 19.79 19.25 19.52 19.24
75.6 81.8 84.2 82.5 84.5 83.5
0.811% 0.559% | 0.479% 0.405% 0.407% 0.465%
jnh201 17.41 18.38 19.40 18.53 18.38 18.57
80.7 80.7 84.9 83.7 83.4 83.6
1.131% 0.961% | 0.760% 0.678% 0.577% 0.690%
jnh301 18.80 19.08 20.51 20.72 20.18 18.66
78.3 77.5 83.6 85.3 83.3 77.5
1024.75 | 1030.70 | 1035.15 | 1039.50 | 1042.85 | 1043.20
uuf250-01 68.43 66.64 69.80 69.08 75.38 77.65
75.7 73.0 78.0 77.1 84.7 87.2
1020.10 | 1024.80 | 1029.65 | 1034.70 | 1036.65 | 1033.85
uuf250-02 68.30 72.95 64.20 73.87 76.38 82.78
75.3 80.4 71.2 82.4 85.7 93.2
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Table 4.7: ACS-MAXSAT. No local search.

instance av. error (av. best) | std.dev. | av. time | std.dev. | av. iter. | std.dev.
jnhl 0.350% 0.081 19.24 2.90 83.5 12.5
jnh201 0.407% 0.096 18.38 4.45 83.4 20.0
jnh301 0.577% 0.206 20.18 3.78 83.3 15.5
uuf250-01 1042.85 2.62 75.38 11.62 84.7 13.0
uuf250-02 1036.65 2.64 76.38 6.76 85.75 7.44

Table 4.8: ACS-MAXSAT plus local search.

instance average error (average best) | std.dev. | average time | std.dev. | average iter. | std.dev.
jnhl 0.030% 0.017 8.18 9.57 21.9 26.9
jnh201 0.009% 0.014 5.44 5.86 15.25 17.69
jnh301 0.038% 0.037 10.24 13.39 25.4 34.41
uuf250-01 1060.5 1.57 7.08 5.17 6.05 4.79
uuf250-02 1059.95 1.66 9.50 8.41 8.20 7.81

is still an issue of current research.

4.3.6 An ILS Algorithm for MAXSAT

Tterated Local Search has been already introduced in Chap. 2. In this section, we
describe our implementation for tackling MAXSAT.

The ILS algorithm we designed combines a Tabu Search (based upon GSAT local
search) as basic local search, with WalkSAT moves as perturbation. Moreover, the
tabu length is adaptively changed in order to gradually favor exploration when no
improvements are not produced. The first phase of search is improved by using
GSAT with parallel flips. The high level algorithm of ILS-MAXSAT is described in
Figure 20. In the following we analyze each component in more detail.

Initial Solution

The importance of an initial solution depends upon the search strategy: a search
with limited diversification requires a multi-start strategy and then a good initial
solution; on the other hand, for a more elaborated search strategy a random initial
solution could be the most efficient way to start. For ILS-MAXSAT we decided to
use a random solution, because it is the fastest way of generating the initial solution.
Consequently, we decided to improve the search strategy.

First phase of local search: Parallel MAX-GSAT

The goal of the first application of local search is to reach a local optimum, hopefully
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Algorithm 19 MAX-GSAT
Input: a set of clauses a, MAX MOV ES
Output: a truth assignment of «
T < initial truth assignment
MOVES <0
besterror «+ Eval(a,T) {Eval(a,T) returns the number of unsatisfied clauses}
bestsolution < T
while MOVES < MAXMOVES do
if T satisfies o then
return T
end if
p < a propositional variable such that a change in its truth assignment gives the
maximum increase in the weighted sum of clauses of « that are satisfied by T’
T « T with p reversed
MOVES «+ MOVES +1
error < Eval(a,T)
if error < besterror then
MOVES +0
bestsolution « T
besterror < error
end if
end while
return bestsolution

in a promising area of the search space. In [191, 190] a variant of GSAT is presented®:
variables are divided in 7 subsets of equal cardinality and for each subset the variable
which fulfills the GSAT criterion is flipped. This results in the application of 7 si-
multaneous variable flips. Depending on some instance properties, an optimal degree
of parallelism 7,,; exists for which better solutions are found on average. 7, is, in
general, not known in advance; nevertheless, from preliminary tests, we discovered
that parallelism in any case boosts the search and produces local optima of better
quality than single-flip local search. We adopted a decreasing 7, starting from a frac-
tion of n (number of variables) and decreasing it at each step. The search stops when
the maximum number of non-improving moves is reached. In Figure 4.2 the typical
behavior of the first phase of MAX-GSAT for single and parallel flips is depicted. The
parallel version reaches a good plateau faster than the single-flip version.

8This topic will be deeply discussed in Chap. 5.
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Algorithm 20 Iterated Local Search (ILS)

so < Generate_Initial_Solution_Randomly

s* « Parallel_MAX-GSAT

while termination conditions not met do

s' < WalkSAT _Perturbation(s*, number of non_improving moves)

Adapt_tabu_length(number of non_improving moves)

s* « Tabu_Search(s')

if F(s*') > F(s*) then

s* + s*

end if
end while
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Figure 4.2: Typical behavior of single-flip and parallel-flips MAX-GSAT at the be-
ginning of search. The plotted data are the result of a run of single-flip and 50-flips
MAX-GSAT on a random generated instance of MAX-3SAT with 1000 variables and

10000 clauses.
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Tabu Search

The local search used to reach the next local optimum after a perturbation is basically
a MAX-GSAT with a variable length tabu list. The simple greedy hill climbing of
GSAT is combined with the effective history-based tabu search with the intent to
provide a simple yet powerful basic scheme to explore plateaus. The tabu length is
incremented at each not accepted new local optimum and it is restarted when an
acceptance occurs.

WalkSAT Perturbation

The choice of an elaborated perturbation instead of a simple random one is due to
preliminary tests where it has been discovered that random perturbations are not
effective for the MAXSAT instances attacked. The simplest WalkSAT version can
be easily implemented on GSAT data structure, as it can be roughly considered
a GSAT local search with a different neighborhood structure. WalkSAT randomly
chooses a not satisfied clause and flips within it the variable which increases the sum
of weights of satisfied clauses the most. WalkSAT and GSAT can be considered as
dual approaches, since the first is a kind of repair algorithm, whilst the second is
a typical greedy technique. The perturbation strength is the number of WalkSAT
moves; it is incremented at each not accepted local optimum and restarted when the
local optimum is accepted.

ILS-MAXSAT was first tested with a C++ implementation and further re-implemented
in C using efficient data structures. In Table 4.9, results of the second implementa-
tion are reported. The averages are evaluated over 20 runs and each run is allowed a
maximum time of 30 seconds. The algorithm run on a Pentium II at 400MHz, with
512 MB of RAM and 512 KB of cache memory.

4.4 Conclusion

In this chapter we have presented the application of metaheuristics to MAXSAT
problems. In particular, we have discussed the implementation of ACO and ILS, for
the first time applied to MAXSAT. We have seen that the concepts of intensification
and diversification, discussed in Chap. 2, and modularity, described in Chap 3, have
an important role in the design process of the two metaheuristics. Moreover, we have
discussed a possible systematic procedure for tuning parameters. The experimental
results show that ACO can achieve good results, but in conjunction with local search.
ILS has a very good performance, both in terms of efficiency and effectiveness.

In this chapter, we focused on the algorithms, their structure and components,
and on design issues. This is one of the two main topics of an engineering perspective
of metaheuristics. A second topic concerns the empirical investigation of algorithm
behavior and the study of the problem characteristics that have influence on the
performance. In the following chapters we will investigate this second issue.
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Table 4.9: Average

weighted instances.

results

3s5atd00 and 3sat1000
http://rtm.science.unitn.it/intertools/sat/benchmark.html.

of ILS-MAXSAT on

weighted

and un-

instances can be retrieved from

instance av. best | std.dev. | av. iter. std.dev. av. time (s) | std.dev.
jnhl 420925.00 0.00 15636.20 11598.84 0.21 0.15
jnh4 420827.00 9.71 113321.65 96102.29 1.55 1.35
jnh201 394238.00 0.00 1837.65 1282.87 0.02 0.01
jnh202 394148.25 39.97 87760.80 88245.98 1.12 1.13
jnh301 444848.60 6.12 83179.50 72040.54 1.16 1.01
jnh302 444459.00 0.00 37885.85 18524.51 0.53 0.26
uuf250-01 1064.00 0.00 53589.75 18646.87 1.07 0.34
uuf250-02 1063.00 0.00 129584.85 | 135922.35 2.33 2.29
uuf250-03 1064.00 0.00 53153.95 22476.21 1.07 0.40
3sat500-5000_1 4843.85 0.36 182337.70 94227.65 6.81 3.21
3sat500-5000_2 4840.75 0.44 234573.60 | 140915.76 8.66 4.87
3sat1000.10000_1 9689.65 1.03 297190.55 95478.42 19.74 5.50
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Chapter 5

Criticality and Parallelism in
SAT

The impact of problem structure on search is a relevant issue in AI research and related
areas. Since the ultimate goal is to design and tune effective and efficient algorithms,
the relations between structural problem features and algorithm performance have
to be investigated. This topic has been recently received more attention, due to
the following reasons: (%) real-world problems are often more difficult to solve than
random generated problems of the same size and (%) results obtained by applying
statistical mechanics techniques (such as phase transition analysis [112]) have shown
a strong correlation between search effectiveness and some critical parameters of the
instances at hand.

In this chapter we investigate the relation between some SAT/MAXSAT instance
features with the behavior of trajectory methods. We will define structural features
on the basis of a constraint graph associated to the instances and in particular we will
deeply investigate the impact of the node degree distribution on the application of
parallel local moves. The results obtained generalize a phenomenon called Criticality
and Parallelism, first discovered in combinatorial optimization problems such as the
TSP and NK-spaces [139], since they apply to more complex search strategies and
different kinds of problems and they also take into account structured instances.

Moreover, in Chap. 6, we also study the correlation between hardness of problems
associated to constraint graphs characterized by the small-world topology, showing
empirical evidence of higher hardness corresponding to small-world instances.

5.1 Structure of Satisfiability Problems
This section is devoted to the discussion of structure in SAT/MAXSAT problems.

First, a general notion of structure is introduced, then we focus on a possible way of
representing the relations among variables in SAT instances by defining a constraint
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graph. Finally, we analyze the relevant parameters and discuss their impact on search.

5.1.1 What is structure?

The definition of structure emerging from the literature on Constraint Satisfaction
Problems and Combinatorial Optimization Problems is usually based on the informal
notion of a property enjoyed by non-random problems. Thus, structured is used to
indicate that the instance is derived from a real-world problem or it is an instance
generated with some similarity with a real-world problem. Commonly, we say struc-
tured for a problem which shows, under some abstraction, regularities such as well
defined subproblems, patterns or correlations among problem variables.

There are also some quantitative measures of structure, such as entropy (see for
example [110]), small-world proximity [230] and compression ratio [193].

The impact of problem structure on search performance has been studied from
different, perspectives. Studies on the impact of problem structure on heuristic search
can be found, for example, in [17, 238, 232, 135]. Important results and observations
on structure and problem hardness are reported in [98, 96, 97]. The effects of problem
encoding are discussed in [116, 18]. Finally, the search algorithms behavior w.r.t.
graph properties has been discussed in [231, 230].

5.1.2 Graph representations of SAT

Some problems suggest a natural structural description, since they have a represen-
tation suitable for structure analysis. A classical example are problems defined on
graphs, such as the Graph Coloring Problem and the k-Cardinality Tree Problem.
In general, for CSPs a constraint graph can be defined, where nodes correspond to
variables and edges connect two variables if there exists a constraint involving them?!.

In general, we have to choose a level of abstraction and a suitable data structure to
associate to the problem. Then we characterize the structure on the basis of relevant
properties of the model we have obtained.

For SAT-like problems, the ones defined with binary variables and clauses, a graph
with strong similarity with the CSP constraint graph can be defined. The graph
associated with a SAT instance is an undirected graph G = (V, A), where each node
v; € V corresponds to a variable and edge (v;,v;) € A (i # j) if and only if variables
v; and v; appear in a same clause. For instance, in Fig. 5.1 the graph corresponding
to the formula F; = (aV =b) A (bV d) A (¢ V ~d V —e) is depicted.

Observe that the same graph corresponds to more than one formula, since nodes
are connected by only one arc even if the corresponding variables belong to more
than one clause. For example, the graph of Fig. 5.1 corresponds also to the following
instances: F5 = (maV =b) A (=bV —d) A (mcV ~dV —e), F3 = (aV —b) A (ma Vb) A
(bVd)A(cV-dV—e)A(cVdVe). F, has the same number of clauses as Fy, but
some clauses in F, are different. Also F3 has the same associated graph, but it has a
different number of clauses than the previous formulas.

1We limit our discussion to binary constraints.



5.1. STRUCTURE OF SATISFIABILITY PROBLEMS 101

Figure 5.1: Constraint graph associated to a SAT instance.

Having a set of clauses associated to the same graph, makes this representation
quite rough. Nevertheless, in the following, it will be shown that some properties of
this SAT-associated graph strongly affect the behavior of metaheuristics on SAT and
MAXSAT instances.

Graphs of different kind can be defined to study the structure of SAT problems.
For instance, a graph can be defined with weights on edges to indicate the number
of clauses involving the connected variables. Moreover, it is possible to construct a
graph where nodes corresponds to literals instead of variables and adding one node
for each clause.

For brevity, in the following we will refer to the simple graph defined at the
beginning of this section as SATgraph.

5.1.3 Structural Properties of SAT Problems

In this section we consider the SATgraph associated to SAT/MAXSAT instances and
its characteristics, in order to give the preliminary knowledge for the next sections.

The impact of graph properties on system behavior has been recently received
attention, as witnessed by the wide spectrum of publications on the subject [235, 163,
4]. Graphs (or equivalently, networks) are the basic structure for a large number of
phenomena and problems, from physics to economics, from computer science to social
sciences. Many problems can be formulated in terms of networks which describe the
relations among components and this abstraction enables us to characterize some
general properties of the problem or the system.

Among the most famous examples we mention the small-world phenomenon [156,
61, 235, 234], that reached the popularity with the 1990’s movie “Six degrees of
separation”. The small-world phenomenon was experimented first by the psychologist
Stanley Milgram, who asked some persons to send a packet to persons they did not
know, by just sending the packet to someone they knew and they considered closer
to the target person. Thus, the delivery would have been achieved by a chain of
acquaintances: the path between the source and the target is composed of persons
who know their previous and next neighbor. Surprisingly, the average length of paths
was fairly low: six. Beyond the popularity of the experiment, small-world is a very
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important phenomenon emerging in very different and apparently distant fields. In
chapter 6 we will discuss an example of the impact of the small-world property on
the hardness of SAT instances.

In the following we define the properties which will be considered as relevant for
the purposes of this thesis.

Given a non-oriented and simple graph, associated to a SAT instance, we consider
the following parameters:

e Node degree
e Characteristic path length

e Clustering

In an instance with n variables, each node v;, i« = 1,...,n, has a degree ¢; €
{0,1,...,n —1}. For k-SAT problems, defined as conjunction of clauses with exactly
k literal each, it holds k — 1 < ¢; < n — 1. We define the average connectivity
of the instance as the average node degree of the corresponding graph, i.e., ¢ =
%2?21 q;- Moreover, to make direct comparisons among instances with different
number of variables, we also introduce the normalization of ¢: § = -Z7. In the
following, we will use indifferently the expressions connectivity and node degree of
an instance Z, being the second defined on the graph associated with Z. In order
to compare the node degree distribution between instances, we will also consider the
frequency of node degree Freq(j) = ‘frequency of a node connected to exactly j nodes’
and the cumulative frequency CumFreq(j) = ‘frequency of a node connected to not
more than j nodes’.

The connectivity gives a rough evaluation of the speed at which a modification
occurring on a node affects the other nodes. The higher the connectivity, the stronger
the “information spreading”?. The impact of connectivity will be discussed in detail
in the following.

The characteristic path length L(G) of a graph G = (V, A) can be informally
defined as the average path length between any pair of nodes. For simplicity, we
will assume that the graph is connected, therefore L is always finite. Formally, the
characteristic path length L of a graph G is defined as the median of the means of
the shortest paths connecting each vertex v € V to all other vertices.

Finally, the clustering coefficient v of a graph G quantifies the probability that,
given node v1 connected to ve and vs, there is an edge between v2 and v3. For instance,
friendship relations are characterized by a high value of . Formally, the clustering
coefficient is defined on the basis of the notion of neighborhood. The neighborhood T,
of a node v € V is the subgraph consisting of the nodes adjacent to v (not including
v itself). The clustering of a neighborhood is defined as:

_ 1By
’Y’U (k;) )

2These considerations have been initially motivated by the research of Kauffman in [128, 129].
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where |E(T',)| is the number of edges in I', and k, is the number of neighbors of
v. Therefore, v, is the ratio between the number of edges of the neighborhood and
the maximum number of edges it can have.

The clustering coefficient -y of a graph G is defined as the average of the clustering
values 7, for all v € V.

Typically, random graphs are characterized by low characteristic path length and
low clustering, whilst regular graphs (like lattices or rings) have high values for L and
v. Conversely, small-world graphs are characterized by low L and high ~.

In the following sections we will discuss the impact of the node degree on the
behavior of local search for SAT in connection with a phenomenon called criticality
and parallelism in combinatorial optimization.

5.2 Criticality and Parallelism in Combinatorial Op-
timization

In this section we report experimental results to support the empirical evidence for
the presence in local search for SAT and MAXSAT of a phenomenon called Criticality
and Parallelism, first discovered in combinatorial optimization problems such as the
TSP and NK-spaces [139]. Furthermore, we show that the problem structure affects
the behavior of local search, by observing that the connectivity of the graph associ-
ated with a SAT instance is a critical parameter.

The phenomenon called criticality and parallelism has been observed in the context
of local search algorithms applied to combinatorial optimization problems [139, 130,
129], where local search is modified by applying more than one local move in parallel.
It has been shown that the effectiveness of these algorithms depends on the parallelism
degree T (number of simultaneous moves): if 7 increases, the solution quality® also
increases up to a maximal point (corresponding to 7,p;) at which it starts to decrease.
It has also been shown that 7, is negatively correlated with the connectivity among
variables of the problem: the higher the connectivity, the lower 7,p¢.

In [139, 45, 129, 130] some studies on the parallelization of local search algorithms
are described. In [139], the authors apply a parallel version of Simulated Annealing to
optimization on NK-landscapes [128, 129]. In brief, this approach can be described as
follows. Suppose to have a minimization problem on N boolean variables; the search
space can be represented as an energy landscape: the goal is to find a minimum in this
landscape. Every variable z; is associated to an energy value e;, which is a function
of z; and other K variables. The objective function of the system (total energy) is
E = % Zf;l e;- A move from state s; to state sy results in an energy difference
AE = E(s2) — E(s1). The application of the move operator is, in this case, simply a
flip of a variable (i.e., z; + ~x;). The basic algorithm behaves as follows: it randomly

3Tn the following we will use the expression solution quality referring to the value of the objective
function; in case of a minimization problem, the lower the objective function value, the higher the
quality.
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selects a variable and flips it; it accepts this move with probability 1 if AE < 0 and
with probability exp(—AE/T) if AE > 0. T is a temperature parameter, which
controls the annealing schedule: the higher 7', the higher the probability to choose
a non-improving move. In the parallel version, every variable z; (i = 1,2,...,n) has
probability p of being selected, that is, at each iteration pn parallel variable flips are
tested on average. Hence, the degree of parallelism of search is 7 = pn. The authors
discover that there is a p,p for which the algorithm finds the solution with the lowest
E: higher or lower values of p on average produce higher total energy values.

Since the effect of a variable flip on the objective function value is evaluated as
if it was the only one to change, parallel (i.e., simultaneous) flips introduce a kind
of noise in the energy evaluation. As observed in [142], the introduction of noise
increases the effectiveness of local search, since it helps to escape from local optima.
It is worth to note that [142] shows that the quality of solutions found increases as
noise increases, up to a critical value above which the performance decreases again.
However, differences and similarities between parallel LS and LS with noise have still
to be completely discovered and explained.

Analogous results are reached in [129, 130], where yet a different approach is
chosen. The COP is, in this case, the optimization of a NK-landscape with variables
arranged in a bidimensional lattice; every variable corresponds to a cell in the lattice
and K indicates the number of neighboring cells linked to it. The lattice is divided
in P non-overlapping patches and a simple local search is applied in parallel to each
patch. A variable is flipped if it decreases the energy of the patch to which it belongs.
The authors find an optimal number of patches which allows the search to reach the
lowest total energy value.

The underlying principle of the last approach is that, in order to optimize systems
composed of conflicting elements, it is generally useful dividing the system in subsys-
tems and optimize each of them independently. One of the effects of simultaneous
changes is to help the search to avoid local optima, as they introduce a kind of noise
due to the fact that each subset performs a local move supposing the other subsets do
not change. Moreover, the authors claim that the optimal subdivision drives the sys-
tem in a state such that subsystems coordinate themselves for a global optimization
goal.

These works on parallelization of search propose very useful ideas for the improve-
ment of local search for COPs and suggest new directions to understand local search
behavior.

To summarize, the parallelization of local search can be achieved in different ways
and the most important applied so far are:

- At each iteration, apply a local move on each variable (or a solution component)
with probability p. This results in an average parallelism of pn, where n is the
number of variables.

- Divide the problem in 7 subsystems (which are, in general, not independent)
and apply local search to optimize each of them independently.
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Algorithm 21 GSAT
Input: a set of clauses a, MAX-FLIPS and MAX-TRIES
Output: a satisfying truth assignment of « , if found
for i := 1 to MAX-TRIES do
T := a randomly generated truth assignment
for j :=1 to MAX-FLIPS do
if T satisfies a then
return T
end if
p := a propositional variable such that a change in its truth assignment gives
the largest increase in the total number of clauses of « that are satisfied by T
with p reversed
end for

end for
return ”no satisfying assignment found”

- At each iteration, temporarily exclude some constraints between variables and
apply a local move on the relaxed problem.

5.3 Parallel Local Search for SAT and MAXSAT

In this section we present one possible way of parallelizing local search to tackle SAT
and MAXSAT. Then, we show and discuss experimental results.

5.3.1 Parallel GSAT

Since the previous results on criticality and parallelism in combinatorial optimization
were obtained by applying a (quite simple) local search characterized by a strong hill
climbing tendency, for our experiments on SAT we chose GSAT [200].

GSAT was first introduced in [200] as a greedy local search algorithm to solve
SAT problems (see Alg. 21). In its basic version, it starts from a random assignment
and looks for a satisfying assignment by moving from one state to another one in its
neighborhood (defined as the set of states at Hamming distance equal to 1). Given a
current state, the next state is chosen by flipping the variable that, if flipped, leads
to the greater increment of satisfied clauses.

GSAT has a hill-climbing component because it tries to increase the number of
satisfied clauses by moving toward the best neighboring state. Moreover, it is able
to escape from some local optima and plateaus by using sideways moves, i.e., moves
from a state to another with the same difference of satisfied clauses. Despite the
effectiveness of sideways moves, GSAT can be stuck in small areas of the search space
without escaping (i.e., it stagnates) and other more recent local search algorithms [115]
perform better on SAT instances.
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Algorithm 22 Parallel GSAT
Input: a set of clauses o, 7, MAXMOVES
Output: a truth assignment of «
T < initial truth assignment
MOVES +0
besterror «+ Eval(a,T) {Eval(a,T) returns the number of unsatisfied clauses}
bestsolution < T
while MOVES < MAXMOVES do
if T satisfies a then
return T
end if
Divide the set of variables in 7 subsets (randomly)
for all subset X}, of variables (k=1,2,...,7) do
pr < a propositional variable in Xy such that a change
in its truth assignment gives the largest decrease in the number of clauses of
« that are not satisfied by T
end for
T « T with p1,p2,...,p, reversed
MOVES + MOVES +1
error < Eval(a,T)
if error < besterror then
MOVES +0
bestsolution < T
besterror < error
end if
end while
return bestsolution

There is a very easy way to parallelize GSAT: the set of variables is divided in
equal subsets; if n is the number of variables, the number of subsets corresponds to
the parallelism degree 7 and the cardinality of each subset is n/7. The procedure we
obtain (thereinafter referred to as PGSAT, see Alg. 22) behaves as follows: at each
iteration, the subset are considered in parallel and the “best” variable for each of
them is flipped. Therefore, after an iteration, 7 variables have been flipped. This has
an effect similar to the introduction of noise, because the possible flips are evaluated
supposing that variables belonging to other subsets are not modified.

We would like to stress that the algorithms at hand are implemented sequentially.
With “parallel moves” we mean “synchronous moves”. Anyhow, these results could
be beneficial also for implementations on parallel architectures.



5.3. PARALLEL LOCAL SEARCH FOR SAT AND MAXSAT 107

Table 5.1: Results on 3-SAT random instances from SATLIB. Median time (s), median
iterations and fraction of solved instances out of 100 are reported. 7oy is in bold.
Parameters used: MAX-FLIPS = 5n, as in [200]; the algorithm was stopped after 10
minutes.

Instances set 7 | Median Time (ms) | Median Iter. | Solved
uf20, 20-91 1 < 0.001 38 1
2 < 0.001 123 1
4 0.020 1002 1
5 0.050 2045 1
uf50, 50-218 1 0.020 536 1
2 0.020 516 1
5 0.070 2241 1
10 4.847 140547 0.8
ufl100, 100-430 1 0.261 5114 1
2 0.019 3553 1
4 0.29 5434 1
5 0.22 4160 1
10 2.674 48094 0.88
ufl150, 150-645 1 1.963 26635 1
2 1.022 13438 1
3 0.871 11405 1
5 0.971 12291 1
6 0.661 7809 1
10 1.752 21878 0.92
uf200, 200-860 1 26.848 276885 0.97
2 6.179 62594 1
4 7.001 68512 0.97
5 4.977 49289 0.99
10 4.586 43877 0.91

5.3.2 Random Instances

In this section we present experimental results obtained by the application of PGSAT
on random 3-SAT instances?; we first treat the case of Uniform Random (UF) 3-
SAT instances (retrieved from the SATLIB benchmarks®). Then we report results on
random forced instances®. The algorithm has been implemented in C and ran on a
Pentium IT 233MHz with 64 MB of RAM.

Each set of UF instances is composed of 100 satisfiable instances and is a problem
in the threshold region [3, 153, 112] (i.e., m/n & 4.3, where n and m are respectively
the number of variables and clauses). Results are summarized in Table 5.1.

We first can observe that (except for the 200-variables instances) there is an op-
timum value for 7 which enables the algorithm to get the overall best performance

4In these experiments the termination condition is given by a maximum amount of computation
time.

S5http://aida.intellektik.informatik.tu-darmstadt.de/SATLIB/.

SRandom generated instances with at least one satisfying assignment.
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Figure 5.2: 120 variables. Median Iterations (in logarithmic scale) vs. 7 (the number
of clauses is reported at the end of the curves).
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of clauses is reported at the end of the curves).
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Table 5.2: Connectivity of uniform and forced formulas of 120 variables.

m Forced 3-SAT | Uniform 3-SAT
240 0.104292 0.103939
300 0.126333 0.126110
360 0.147974 0.147897
420 0.169243 0.169293
480 0.190125 0.190238
540 0.210404 0.209885
600 0.229820 0.229594
660 0.249062 0.248930
720 0.267728 0.267714

(time, iterations and fraction of solved instances). The phenomenon is clear: in this
case, as in [139], there exists an optimum degree of parallelism. There is also evidence
of the fact that as the number of variables increases, also 7,p; increases.

We also generated two sets of 3-SAT random forced instances (n = 120, 240); each
set is composed of 1000 instances for each value of m. Results on forced instances
are reported in Fig. 5.2 and Fig. 5.3. In these graphics we plotted median iterations
vs. parallelism for each set of instances. Median time has the same behavior and the
fraction of solved instances is always 100%. First of all, we notice that for every set
of instances there is a minimum in the search cost (corresponding to 7,p¢); moreover,
we observe that 7,,; slightly decreases as m increases and there is not evidence for
a sharp transition of 7,,; in the transition region. Therefore, we can conclude that
exists a different parameter linked to 7,,:, other than the ratio m/n. This topic will
be the subject of the next section.

Graph connectivity

As stated in Sec. 5.1, the graph associated with a SAT instance is an undirected
graph G = (V,A), where each node v; € V corresponds to a variable and edge
(vs,v5) € A (i # j) if and only if variables v; and v; appear in a same clause.

The average connectivity of an instance is g = % >-%, ¢;- and the normalization
of gisg= 13-

In Table 5.2, values of g for uniform non forced and forced instances are reported:
we observe that g decreases as n increases. Another observation derives from Fig. 5.4,
where we plotted 7,,; against g: the tendency depicted indicates that there is a strong
negative correlation between 7., and g. To reinforce this conjecture, we generated
3-SAT instances with the same § and we ran PGSAT over them. In Table 5.3 the

results are reported: note that 7, is always comprised between 4 and 5.

Summary of first experiments set

The experiments performed on random 3-SAT instances suggest two observations:
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Table 5.3: Results on Random 3-SAT formulas (100 instances for each set) with
q = 0.2. Top is in bold.

T Median Time | Median Iter. | Solved
n =50,m = 82,7 = 0.2 1 < 0.001 9 1
2 < 0.001 6 1
5 < 0.001 5 1
10 < 0.001 8 1
n = 80,m = 220,73 = 0.2 1 < 0.001 63 1
2 < 0.001 39 1
4 < 0.001 25 1
5 < 0.001 23 1
10 < 0.001 29 1
n =100, m = 352, = 0.2 1 0.003 448 1
2 0.002 287 1
4 .001 138 1
5 0.001 156 1
10 0.002 245 1
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1. There is a value of 7, € {1,...,n} that leads PGSAT to achieve the best
performance. That is, the average time (and the average number of iterations)
of PGSAT (7pt) is not higher than that of PGSAT(7), for 7 € {1,...,n}.

2. Topt seems negatively correlated with the average connectivity of the SATgraph:
the higher g, the closer 7, to 1.

The first observation is not surprising. Indeed, since GSAT could stagnate in a
small region of the search space, applying more than one flip in parallel might help
the search to escape from that region. At the other extreme, if 7 = n the search does
not proceed, but it just oscillates. Therefore, it is likely that a value 7,5+ such that
1 < Topt < n enables the algorithm to perform better than with any other value of 7.
Nevertheless, what makes the results very interesting is the second observation: the
value of 7,p; seems to be linked with a structural property of the instance (the average
connectivity q), apparently independently of other instance parameters, such as the
ratio m/n. Moreover, the supposed correlation between 7., and g perfectly fits in
the previous results on criticality and parallelism in combinatorial optimization. In
this case, the intuition behind the phenomenon is that when the relations between
variables are loose (i.e., 7 is low), a variable flip affects a relatively small number of
other variables, thus the system can be subdivided into several nearly independent
subsets. On the contrary, tight relations produce a large network of dependencies
among the variables and thus they are more sensitive to single flips.

To test whether the phenomenon is just a coincidence on satisfiable SAT instances
and if it is general in the context of SAT-based problems, we also performed experi-
ments on an optimization problem strongly related with SAT: MAXSAT.

5.3.3 Results on MAXSAT

We applied PGSAT also to MAXSAT instances, to test whether the connection be-
tween connectivity and 7,,; is influenced by the property of formulas to be satisfiable.
We discovered that the phenomenon appears with the same characteristics also in
unsatisfiable formulas. In this case, the evaluation of the algorithm is given in terms
of the error returned after the termination condition is met. The error is defined as
the number of unsatisfied clauses corresponding to the returned assignment. From
now on, the termination condition is given by a maximum number of moves without
improvement. Moreover, since we consider an average error, the algorithm is run
several times on the same instance and, to make results independent of a particularly
(un)favorable subdivision of variables, the composition of subsets it is reconfigured at
each iteration.

We tested PGSAT on random generated unsatisfiable instances with three literals
per clause (3-SAT), retrieved from SATLIB. We considered nine sets, from 50 to 250
variables and each set is composed of ten instances with a ratio between clauses (m)
and variables (n) approximately equal to 4.3 (the critical region [153]). The number
of subsets 7 varies from 1 (only the best flip among all the variables is performed) to
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Table 5.4: Median and mean of optimal

values of 7 for each set of instances. Table 5.5: Average connectivity and

its normalized value for typical 3-
SAT random generated instances.

number of variables | Median 7op: | Mean Topt number of variables q q
50 4 4.18 50 19.88 | 0.4057
75 6 5.9 75 21.76 | 0.2941
100 6 6.3 100 22.88 | 0.2311
125 7 7.5 125 23.33 | 0.1881
150 8 9.4 150 23.99 | 0.1610
175 10 10.33 175 24.00 | 0.1379
200 11 10.7 200 24.11 0.1212
225 12 12.36 225 24.21 0.1881
250 12 12.6 250 24.34 | 0.0976

n/2; at the beginning of each iteration, a number of 7 subsets is randomly generated’.

The graph in Fig.5.5 reports the average error (number of unsatisfied clauses) as
a function of 7 for an instance with 100 variables and 430 clauses. This graph shows
the typical behavior of the algorithm. Observe that the original algorithm (7 = 1)
reaches an average error of 4 and, as 7 increases, the error decreases until a minimum
at 7 = Topt = 6; above that value the average error starts to increase.

For all sets of instances, a similar behavior has been noticed. Moreover, as can be
observed in Fig.5.6, the higher the number of variables, the higher 7,,¢. This result is
summarized in Table 5.4, where for each set median and mean of 7,,; are reported®.

Table 5.5 shows the typical values of g for the instances considered in this analysis.

7All subsets have equal cardinality, except for one which contains 7 + n mod 7 variables.
8The average error has been evaluated over 100 runs and then median and mean of 7,pt over the
10 instances of each set have been considered.
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are averaged over 10000 runs.

Fig.5.7 shows the graphic combination of Table 5.4 and Table 5.5. We notice that the
curve representing 7,,; vs. g is monotonically non increasing.

A further analysis of the statistics presented earlier in this section, permits to
discover an interesting phenomenon. For example, the graph of Fig.5.8 shows the
average error and the error variance as a function of 7 for an instance with 100
variables. We observe that the minimum error is obtained for a value of 7 slightly
smaller than the value for which the variance has a minimum. We suppose that near
the critical value 7, the algorithm achieves the highest effectiveness and thus it
converges toward a smaller region around the best value it can find.

Concluding, we have shown that an optimal value of parallelism exists also for
MAXSAT and that it is negatively correlated with the average connectivity of the
instance. These results are in accord with the results discussed in the previous section
and they can be seen also as a generalization of them, since they are related to an
optimization version of SAT.

So far, we have presented and discussed experiments on PGSAT attacking ran-
dom SAT/MAXSAT instances. From the observation of the results, we can conjecture
that 7op¢ is strongly correlated with the average node degree of the SATgraph. The
testbed used, uniform randomly generated formulas, have however the disadvantage
of imposing an average evaluation of the connectivity, supposing negligible the vari-
ance of the individual node degree. Nothing has been said about the distribution of
the node degree and the hypothesis supporting the use of a global parameter like g.
Moreover, the SAT/MAXSAT instances considered in practice are not random but
rather structured and often characterized by non random distributions of node de-
gree. In order to overcome the drawbacks of experimenting on random instances, we
investigated in two opposing directions. In the following sections we will first show
the results obtained on SAT instance with SATgraph characterized by a fixed node
degree (i.e., ¢; = ¢,i =1,...,n). Then, in section 5.5, we will address the question of
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whether and under what conditions the phenomenon discovered for random instances
is still present in structured instances.

5.4 Constant-degree k-SAT instances

In the previous sections, we have characterized the connectivity of random 3-SAT
instances with the average connectivity g, which seems to be enough informative
for uniform generated instances. In random 3-SAT instances, nodes have in general
different degree, even though the values are mainly concentrated around the mean®.
In order to perform experiments with the minimum amount of parameters which can
vary, we devised a method to generate random k-SAT instances (for our purposes,
k = 3) where variables have the same node degree. Therefore, the average connectivity
equals the node degree of every node in the graph.

Instead of starting from a SAT formula, expressed as conjunction of clauses with
fixed number of literals, we start from a graph with the desired connectivity properties
and we use it as a skeleton for generating a SAT formula.

The starting graph is a lattice graph, in that each node is connected to a fixed
number of lattice neighbors. Formally'?, a d-lattice graph is such that any node v is
joined to its lattice neighbors u; and w; as specified by the following formulas:

u; = [(v —4° + n] (mod n),
w; = (v + %) (mod n),

where n is the number of nodes, d is the graph dimension, 7 is the number of
neighbors per node, i = 1,...,7/2, § = 1,...,d, and it is generally assumed that
v > 2d.

For instance, a 2-lattice graph with gamma = 4 is depicted in Fig. 5.9. Observe
that the graph can be seen as a circular structure with adjunctive links connecting
neighbors at distance 2. The graph has dimension 2, as it can be seen as a square
grid with wraparound borders.

The lattice graph enjoys the desired property of having nodes with constant degree.
Moreover, the node degree is a free parameter of the graph.

Once obtained the graph with the given connectivity, it is necessary to assign
variables to nodes and to generate the clauses of the formula. The first step can be
done very easily by assigning variables in order: variable z; is assigned to node i, for
i =1,...,n. The generation of clauses, i.e., of a formula that can be mapped into the
given lattice graph, is a bit more complex. First of all, we remind that a SATgraph
corresponds to a set of SAT instances. Therefore, it is important to define a given
structure for the formula. There are quite a few choices at this point:

e Variable clause length

o Fixed clause length k. Which value for k?

9This topic will be further discussed in Sec. 5.5.
10The definition is taken from [234].
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Figure 5.9: 2-lattice graph with v = 4.

Forced instances

Controlled clauses/variables ratio (m/n).

Which distribution for clauses and literals? Uniform?

Satisfiable, unsatisfiable, both.

Our choice is to follow the usual experimental settings for random generated
SAT instances: 3-SAT formulas with controlled ratio m/n. When needed, to ob-
tain sat/unsat formulas we have filtered the generated instances with a complete
algorithm, instead of generating forced formulas (which usually suffers of an anomaly,
as they have usually a higher number of solutions than the corresponding non-forced
ones).

In the following we describe the algorithm to generate 3-SAT instances with given
ratio m/n on a lattice graph (thereafter called lattice-3-SAT instances). The gen-
eralization of the algorithm to k-SAT instances is straightforward. The high level
algorithm is described in Alg. 23. The algorithm is structured in two phases. In
the first phase a minimal set of clauses is generated to obtain a formula that can be
represented by the given lattice graph. In the second phase, the required number
of clauses is generated by adding clauses randomly chosen from the first set and by
randomly changing the sign of literals.

In the first phase, clauses of three literals are constructed, by taking in turn each
variable as a pivot and adding two subsequent variables (see Fig. 5.10,5.11). In order
to avoid repetitions of clauses, for every variable z; only subsequent variables z;,j > i
(modulo n) are considered. Indeed, given the symmetry of the graph, the clauses
involving the specular part of neighbors will be generated by using those neighbors
as pivot (see Fig. 5.12,5.13).

A complete example of a lattice-3-SAT instance with n =6, m =12 and v =4 is
the following;:
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Algorithm 23 Generation of a 3-SAT instance on a lattice graph
INPUT: n, m, v {v is the number of neighbors}
OUTPUT: 3-SAT formula ® = {C},...,Cy,} with n variable and m clauses asso-
ciated to a lattice graph with n nodes with v neighbors each.

Build a lattice graph G(n,~) (on a circle) with n nodes with + neighbors each;
Assign variables (clockwise) to nodes;
D0
fori=1ton—1do
The neighbors of z; are Nt = {®iy1,...,%4,2} (mod n) and N~ =
{mi—17 EERE mi*’y/2} (mOd ’I’L),
for each pair z;,2;41 in N do
Construct the clause C' =z; V&; V 241
Negate each variable in C' with probability 0.5;
d+—dUC
end for
end for
{Now the number of clauses is |®| = n(y/2-1) }
while |®| < m do
repeat
Pick randomly a clause C' in ®;
Negate each variable in C' with probability 0.5;
until a new clause C' is generated
d+—oUC

end while

S ={(-z1 Va2 Vxs3), (22 V23V 24), (-3 VE4 V25),(m2a V-5V 6), (25 V26 V
3&'1), (33'6 Vi V(EQ), (—|:E5V1176V—|.’L'1), (.Z'g V.’L’4V—|.’E5), (—l.’L'5 V.’L’6V.Z'1), (33'2 VZ’3V—|.’L'4), (.’L'GV
-1V .’172), (‘!.’EQ Vx3V 1’4)}

5.4.1 Experimental results

We have tested PGSAT on a benchmark composed of constant degree 3-SAT instances.
The benchmark is composed of six sets of thirty instances. Each set contains instances
with the same number of variables (n = 20, 50, 100, 200, 400, 600) with varying ratio
between clauses and variables number (m/n = 3,4,5). For each instance type we
randomly generated ten instances.

We run PGSAT 1000 times for every instance. When the ratio m/n is in the
proximity of the critical value 4.3 (solvability threshold [3]) or above it, the instances
are likely to be not satisfiable. Therefore, in order to keep a uniform evaluation, the
comparison among different parallelism degrees is based on the number of unsatisfied
clauses returned at the end of the execution.

Results in are plotted in Fig. 5.14, 5.15, 5.16 and 5.17. On the left we reported
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Figure 5.10: Construction of the first Figure 5.11: Construction of the second
clause involving variable z; . clause involving variable x;.

X X4 Xg Xa

Figure 5.12: Construction of the third Figure 5.13: Construction of the fourth
clause involving variable ;. The pivot  clause involving variable x;. The pivot is
is variable xg. variable x7.

the average error against the parallelism, while on the right the rank of parallelism
is plotted against the parallelism itself. The figures on the right part are obtained
by ranking the values of 7 depending on the average error. The lower the rank, the
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better.

We observe two main points. First, even for instances with the same number of
variables and clauses, the optimal parallelism is not exactly the same. Indeed, we
can observe that 7, is confined in a range of values. This fact can be attributed to
the variance among random generated instances. Furthermore, in some preliminary
measurement, we observed that those differences may be explained by the correlation
of the search landscape.

A second important observation is that the range of optimality is practically the
same independently of the ratio m/n. This second observation supports the conjecture
that the optimal parallelism mainly depends on the instance connectivity and it is
independent of other parameters, such as the ratio m/n.

5.5 Structured Instances

In this section we address the question of whether and how parallel local search
exhibits the criticality and parallelism phenomenon when performed on structured in-
stances. First, we experimentally show that also for structured instances there exists
an optimal value of parallelism which enables the algorithm to reach the optimal per-
formance. Second, by analyzing the frequency of node degree of the graphs associated
with the SAT instance, we observe that an asymmetric and not regular distribution
strongly affects the algorithm performance with respect to 7.

5.5.1 Re-evaluating PGSAT on random instances

We analyzed the behavior of parallel PGSAT on random instances by using as termi-
nation condition a maximum number of moves without improvement!!. As we will
see, the results are qualitatively the same as those with obtained within a time limit
(Sec. 5.3.2).

The variables are divided in 7 subsets at random, before each iteration. All subsets
have equal cardinality (n/7), except for one which contains n/7 + n mod T variables.
Results, averaged over 1000 trials, are shown in Fig.5.18. We can observe that for
every value of n the average (resp. median) number of unsatisfied clauses returned
by the algorithm has a minimum corresponding to a 7opt(n). If we consider the
average, the results are: 7,,t(20) = 1, 755¢(50) = 5, Topt(100) = 7, 75t (150) = 11,
Topt (200) = 11, 75,,(250) = 12. For the success rate (i.e., the number of solved
instances) results are analogous. We can note that the correspondence between the
minimum error and the maximum success rate is fairly good, though it seems that the
maximal success rate is reached just before reaching the minimum error. An important
point to consider is that, at least in the context of random 3-SAT instances, both for
maximal success rate and minimal error, the following relation holds: n; > ne =
Topt(M11) > Topt(n2). As previously noted, this relation derives from the fact that 7,
is negatively correlated with ¢ and it is not just an effect of size scaling. Indeed, at

11 This cutoff value has been set to n.
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fixed ratio between clauses and variables, ¢ decreases as n increases. These results
are in accordance with previous ones discussed in Section 5.3.2.

Connectivity distribution

In order to compare the node degree distribution between instances, we consider the
frequency of node degree Freq(j) = ‘frequency of a node connected to exactly j nodes’
and the cumulative frequency CumFreq(j) = ‘frequency of a node connected to not
more than j nodes’. Fig.5.19 shows the cumulative frequency vs. the normalized
node degree for random 3-SAT instances retrieved from SATLIB [117]. The instances
belong to the threshold region (clauses/variables & 4.3) and are satisfiable. Note that
the curves are quite regular and, as the number of variables increases, they converge
to a step function located at the average node degree. We can assume that the graph
corresponding to a random 3-SAT instance is a random graph Gy, , [164], where n is
the number of nodes and p is the probability that any pair of nodes are connected.
In fact, uniform random 3-SAT instances of SATLIB are generated by randomly
selecting, for each clause, three literals among the complete set of 2n literals'?. Thus,
every pair of variables has the same probability to belong to a same clause. Note that
the graph G associated with a SAT instance does not take into account the number of
clauses involving the same pair of variables. Indeed, an edge just represents the fact
that the variables it connects belong to at least one clause 3. For random graphs like
G p the distribution probability of connectivity follows a Poisson distribution, i.e.,

prob{a node is connected exactly to other j nodes} = e=*\/j!

where the parameter A is the expected node degree, therefore, in our case, A =
(n —1)g = q. For instance, in Fig.5.20 the frequency of a 3-SAT instance with 100
variables is plotted.

Experiments on Structured Instances

In this section we first analyze the node degree distribution of graphs associated with
structured SAT instances. Then we show and discuss results of PGSAT, run with
different values of 7, on two representative structured SAT instances.

Structured instances are characterized by the presence of some regularity in their
components, for example graph problems based on ring or lattice topology, SAT
problems obtained by encoding logic problems (circuit testing, inductive inference,
planning, etc.). In SAT problems generated by an encoding procedure from other
problems there are two sources of structure: the inherent structural properties of the
original problem and the relations among variables introduced by the encoding pro-
cedure. As noted in [18], the inherent structure of the problem might be partially lost
in the encoded formulation. However, independently of the origins of structure, the

12The description of the generation procedure is available at www.satlib.org.
13The relation between random graphs and k-SAT instances as a function of the number of vari-
ables, clauses and literals per clause is subject of current study.
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Figure 5.18: Average and median error (number of unsatisfied clauses) and fraction
of solved instances (rescaled when necessary) vs. parallelism (7) for random 3-SAT
instances with 20, 50, 100,150, 200 and 250 variables. Results are averaged over 1000
trials. We can observe that for every value of n the average (resp. median) number
of unsatisfied clauses returned by the algorithm has a minimum corresponding to
a Topt(n). If we consider the average, the results are: 7,,:(20) = 1, 7,p¢(50) = 5,
Topt(IOO) = 7, Topt(lso) = 11, Topt(QOO) = 11, Topt(250) =12.
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SAT instances we consider clearly show node degree distributions very different with
respect to random instances. Fig.5.21 shows the curve of cumulative frequency for
structured SAT instances taken from SATLIB, produced by encoding a Blocks World
Planning Problem (huge), a Logistics Planning Problem (logistics-a) and Inductive
Inference (ii16a1). The plotted curves show apparent differences with those of ran-
dom SAT problems. They are not as regular as random ones and they have gaps and
plateaus, especially in the uppermost part of the curve. Structured instances thus
have a more spread and non-uniform connectivity distribution.

The instance i##16al is the most peculiar and differs the most from that of random
instances. It has 1650 variables and a normalized average connectivity G;i6,1 =
0.0239. Its cumulative frequency is shown in Fig.5.22, along with the cumulative
frequency of a random 3-SAT instance of the same size and normalized connectivity
(instance Jsat1650). Fig.5.23 and Fig.5.24 plot the respective frequency of node
degree. We can note that the node degree frequency of the structured instance is
highly asymmetric and has a peak close to 0.018, corresponding to the large gap in
the cumulative frequency. Therefore, ii16al has a very large number of nodes with
lower connectivity than the average. Conversely, the node degree frequency of the
random instance is regular (it approximately fits the Poisson distribution with high
mean) and the highest peak in frequency is very close to the mean.

Fig.5.25 and Fig.5.26 show the average and median error (number of unsatisfied
clauses) respectively on #16al and 3sat1650 for PGSAT with different values of 7.
Results are averaged over 500 trials. We first observe that also for the structured
instance there exists an optimal value of 7. Nevertheless, despite the fact that the
two instances have the same average connectivity, the optimal parallelism is higher
for ii16a1 than for 3sat1650. We conjecture that the high number of nodes with low
degree present in the instance #16a! is the cause of higher optimal parallelism.

We performed the same kind of experiments on the logistics-a instance, by compar-
ing it with a random 3-SAT instance with the same size (828 variables) and normalized
average connectivity g = 0.0275 (instance 3sat828). Fig.5.27 and Fig.5.28 show the
respective node degree frequency. Note that, while the distribution of the instance
3Isat828 approximately follows a Poisson distribution, the distribution of logistics-a
is not regular and has a high peak at normalized node degree 0.0326. The results
of PGSAT performance with respect to 7 are plotted in Fig.5.29 and Fig.5.30. The
results are analogous, but dual, to the previous ones on #16a1. We can observe that
also for this structured instance there is a value of 7 leading to a minimum average
error, but in this case the optimal parallelism for logistics-a is lower than that of the
random instance. This difference may be explained by observing that the highest
peak in logistics-a node degree frequency corresponds to a node degree higher than
the average value, which characterizes the random instance.

We can conclude this section by considering that the results obtained clearly show
that an optimal parallelism value exists also for structured instances. Nevertheless,
not surprisingly, this value is strongly affected by the asymmetric frequency of node
degree. In particular, we observe that the highest peaks location seem the most
relevant characteristic influencing the optimal parallelism.
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5.5.2 Morphing from random to structure

In Sect.5.3.2 we have seen that the average connectivity affects the optimal parallelism
for random instances. The results of the previous section show that for structured in-
stances, characterized by asymmetric frequency distribution, the optimal parallelism
is mostly affected by the highest peaks of node degree distribution. To investigate
more deeply this difference, we generated instances with a controlled amount of struc-
ture, by means of a technique called morphing [82]. This methods enables to generate
instances gradually morphing from source to destination instance by varying a pa-
rameter p € [0,1]. The lower p used to generate an instance, the more similar to
the source. To be applied on SAT problems, the method needs instances with the
same number of variables (n) and clauses (m). A new SAT instance is generated by
selecting each of the m clauses either from the source or the destination. The clause
is chosen from the destination instance with probability p. We generated a satisfiable
random 3-SAT instance with 1650 variables and 19368 clauses (Jsat1650_large), the
same number as ii16al. With p = 1 we obtain #i16al and with p = 0 3sat1650_large.
Since p controls the number of clauses belonging to the structured instance #16al,
it also measures the amount of structure in the generated instance. Fig.5.31 shows
the node degree cumulative frequency of source (random), destination (structure)
and instances generated by the morphing method. The node degree frequency of the
considered instances is plotted in Fig.5.32. The results of 500 trials of PGSAT for
different values of parallelism are shown in Fig.5.33. Observe that the optimal par-
allelism increases with p, therefore we can conjecture that the more similar the node
degree frequency distributions of two instances, the closer should be their optimal
parallelism degrees.

We can conclude by asserting two points. First, regardless of the instance type, the
average connectivity is a rough, yet indicative, parameter for the optimal parallelism.
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Figure 5.32: Frequency against normalized node degree for instances generated by
morphing from a random instance (3sat1650_large) to a structured one (4i16al).

Second, we have again found experimental evidence that in structured instances the
highest peaks in the node degree distribution have a strong impact on the optimal
parallelism value. Of course, we can not claim a statistical proof, that needs an
exhaustive and deeper experimental analysis.

5.6 Tuning of 7

Beside the interest about the phenomenon itself, the parallelization can be used to
improve local search, namely GSAT. The intuition behind the effectiveness of paral-
lel local moves is that multi-flip moves help to escape from local minima and reach
faster search space regions with low objective value. This behavior can be presum-
ably explained by the fact that, at 7o, the distance between a state and its successor,
reached after a multi-flip move, enables local search to achieve the optimal trade-off
between intensification and diversification!*. This conjecture is supported by experi-
mental results in [130, 129] and by preliminary tests we performed on large MAXSAT

14 We refer to the informal definition of intensification as the greedy exploitation of search history
and diversification as the exploration of the search space.
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instances. For instance, consider Fig.5.34 where the initial iterations of PGSAT with
single and multi-flips are compared. The algorithm is run on an unsatisfiable 3-SAT
instance with 1000 variables and 10000 clauses, with 7 = 1 and 7 = 50. As we can
note, the multi-flip version achieves larger solution improvements than the single flip
one in the same amount of time.

Parallel flips may prevent the search to get trapped in local minima in similar way
to random noise when added to local search [142, 199, 32]. The relations between
parallel moves and noise are beyond the scope of this thesis. However, it is important
to observe that the optimal number of parallel flips and the optimal noise level are
related to properties of the search landscape, like the ruggedness, the distribution of
local minima and the size of their basins of attraction [144, 122]. Since up to now
theoretical results are still missing to compute the optimal parallelism value for a
given instance, we need an empirical method to tune 7 as close as possible to Topt.
The easiest way is to run PGSAT for 7 = 1,2, ..., using a small cutoff value and stop
as soon as a minimum average error has been found. Nevertheless, this method is,
in general, computationally expensive, as it might require several runs before finding
Topt- Indeed, since the algorithm is stochastic, several runs have to be performed
before achieving significant statistics.

We developed another method which requires just one short run for every can-
didate for 7,,¢. This method is based on the observation of solution improvements
PGSAT achieves during one execution. From a mathematical standpoint, our ob-
jective is to find the minimum of a curve €(7) representing the average error € with
respect to 7. From the observation of experimental data, we can assume the curve
convex and with one minimum. Therefore, 7o, is given by the abscissa 7 such that
the derivative of the curve is zero, i.e., dfi(:)|rzfopt = 0. Since the values of 7 are
integer, an approximation of the derivative is Ae(r) = e(r) — e(r — 1). Thus, the
objective is to find 7 such that e(7 — 1) — €(7) = 0. Fig.5.35 shows typical results
obtained with short runs of PGSAT on the logistics-a'®, for which 7, ~ 6. For every
run length (1,10, 20, 50) we stored the objective function value (number of unsatisfied
clauses) reached by PGSAT with different values of 7; we call this value e(7). For each
point (z,y) in the plot, the coordinate y is given by e(x — 1) — e(z). For example,
let us consider the 1st iteration curve. After one iteration, the difference of the errors
returned by PGSAT with 7 =1 and 7 = 2 is 12, i.e., €(1) — €(2) = 12. All the runs
have the same initial state and the algorithm uses the same random number generator
seed. We can observe that at the 50th iteration e(t — 1) —e(7) = 0 for 7 = 9 and
the error difference approaches zero at 7 = 7. Moreover, we can observe that, except
for the plot of the Ist iteration, the curve decreases approximately linearly up to a
point where the slope decreases quite abruptly. This point corresponds, with good
approximation, to 7,p5¢. The fact that at the knee of the curve Ae is not zero can be
explained by observing that the solution improvements achieved with high parallelism
(even T > T,pt) at the beginning of the search are higher than those of the remaining
part of the search. The results obtained yield to the definition of a simple procedure

15We have chosen logistics-a just as a representative example of the experiments we made on the
considered instances.
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Figure 5.34: Single flip vs. multi-flip GSAT on an unsatisfiable 3-SAT instance with
1000 variables and 10000 clauses.

to tune 7: run PGSAT for a very small number of iterations for different values of
7 and set it at the value corresponding to e(t — 1) — e(7) =~ 0. Alternatively, we
can set 7 to the value corresponding to the knee in the curve, thus further reducing
the required number of iterations. Up to now, we have determined the near-optimal
value of 7 by directly observing the plotted data, but the development of an automatic
procedure is subject of current work.

5.7 Discussion

The results discussed in the previous sections strongly support the conjecture that the
criticality and parallelism phenomenon appears also in local search for SAT/MAXSAT
problems.

It has been first shown that for different classes of problems (random and struc-
tured SAT, MAXSAT, lattice SAT) there is a value of 7 that optimizes the algorithm
performance. Furthermore, it has been discovered that, given a SATgraph, its con-
nectivity strongly affect the optimal value of 7. In case of SATgraph with constant
node degree and random instances, the higher ¢ (resp. ), the lower 7,,:. In case of
small differences among instances with the same connectivity, we have conjectured
that the fitness landscape correlation correlation provides a justification for differ-
ences in T,p¢. These results are in accordance with the previous results found in the
literature.

Beyond these experiments, the impact of SATgraph structure has been investi-
gated, finding clues for the dependence of 7., on the frequency of node degree.

Nevertheless, we can not definitely conclude that the phenomenon is exactly the
same found in [142], mainly for two reasons. The first reason is that, since experi-
ments on a possible phase transition have not been performed, it might be possible
that a phase transition in this case does not exist. It is important to observe that
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the algorithm applied is more effective than simple hill climbing, therefore the abrupt
change in the behavior might be smoothed (as, indeed, is apparent from the plots in
the previous sections). The second reason derives from the scientific method appli-
cation. Even though the results presented strongly suggest (and even encourage) the
conjecture, it is still early to assert statistical proof for the phenomenon.

However, the application of these results goes beyond the simple empirical inves-
tigation of hill climbing-like procedures. Algorithm other than GSAT might benefit
from multi-flips application, for example GWSAT and WalkSAT, more effective on
SAT than GSAT itself. There are several open issues to explore, like the exploitation
of graph properties to define the subsets of strongly connected variables (instead of
dividing variables at random), the investigation of the relation between criticality
and parallelism and the introduction of noise in local search, the analytical study of
connectivity and optimal parallelism.

Finally, we may suppose that there could be an analogous phenomenon also when
complete algorithms are applied. The critical parameter can be, for instance, the
randomization degree, or the number of assignments performed at each construction
step.

5.8 Related Work

This work is inspired by work of Kauffman et al. on criticality and parallelism [139,
130, 129] and Monte Carlo algorithms for N K-models [45]. Even though not with
the same objective, other works deal with multiple flips in local search for SAT and
MAXSAT problems. Yagiura and Ibaraki [243] present a computational study of
r-flips neighborhoods (r = 2,3). Parkes [169] considers the parallelization of Walk-
SAT [142, 199] for 3-SAT instances in the underconstrained region and observes that
parallel flips does not degrade the local search, indirectly confirming our results. In-
deed, in the underconstrained region the connectivity is low, therefore the optimal
parallelism is high. Finally, Strohmaier [207] discusses the implementation of GSAT
on a multi-flip neural network and Milano and Roli [150, 149] present a general method
for tackling SAT with boolean networks, explicitly considering the possibility of multi-
flips local search algorithms.
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Chapter 6

Small-World Phenomenon
and SAT

Small-world graphs [234, 235] are characterized by the simultaneous presence of two
properties: the average number of links connecting any pair of nodes is low and the
clustering is high. Social networks defined on the basis of friendship relationships are
a typical example of graphs with a small-world topology.

The impact of small-world topology on search problems (e.g., Graph Coloring
Problem) has been discussed in [230], where it is shown that many Constraint Satisfac-
tion Problems and Combinatorial Optimization Problems have a small-world topology
and the search cost can be characterized by a heavy-tail distribution.

In this chapter we report experimental results concerning the behavior of approx-
imate and complete algorithms applied to SAT instances with a constraint graph
characterized by a small-world topology. The primary reason why we consider also a
complete algorithm is to show that some structural properties may have impact on
very different search algorithms. Moreover, the comparison of complete and approxi-
mate algorithms with respect to problem structure enables the successful integration
of both the techniques. We will show that the search cost of the complete solver is
higher for small-world instances. A similar behavior can be conjectured also for local
search algorithms.

6.1 Small-world SAT instances

In order to explore the behavior of search algorithms on small-world SAT instances,
we generated a benchmark by morphing between instances constructed on lattice
graphs and random instances. The core idea of the morphing procedure is derived
from [82], where a method which enables to generate instances gradually morphing
from a source to a destination instance. This procedure is also very similar to the one
used in [235] to generate small-world graphs by interpolating between lattice graphs

137
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Figure 6.1: Example of lattice graph. Fach node has 4 neighboring nodes.

and random graphs.

Lattice 3-SAT instances have been generated on the basis of a lattice graph (see
Fig. 6.1), as described in Chap. 5.

The instances composing the benchmark are generated by morphing between a
lattice SAT instance and a random one. Each instance is obtained by taking from the
lattice SAT instance all the clauses except for a prefixed number which are randomly
chosen from a random SAT instance with the same number of variables and clauses.
This procedure is indeed very similar to the morphing procedure described in [82],
but in this case we control the exact number of clauses taken from the destination
instance. In this way it is possible to interpolate from lattice to random with the
finest tuning and observe the arising of small-world properties in SAT instances.

In order to have a quantitative measure of the small-world characteristic, we intro-
duce the prozimity ratio p [230], defined as the ratio between clustering and charac-
teristic path length, normalized with the same ratio corresponding to a random graph,
ie., p=(C/L)/(Crand/Lrand)- In Fig. 6.2 the clustering and the characteristic path
length of SAT instances gradually interpolating from lattice to random are plotted
(in semi-log scale). We observe that L drops very rapidly with the introduction of
clauses from the random instance. Conversely, C' maintains a relatively high value for
a higher amount of perturbation. The instances with low length and high clustering
are characterized by the small-world property. This is also indicated by the proximity
ratio curve, which approximately assumes its maximum in correspondence of that
region.

We generated four sets of instances (respectively with 100, 200, 500 and 800 vari-
ables), each obtained by morphing between a lattice 3-SAT and a random 3-SAT
with same number of variables and clauses. All the generated instances are satisfi-
able (unsatisfiable instances have been filtered by means of a complete solver). The
ratio between the number of clauses and the number of variables is 3, lower than the
so-called critical ratio (which is close to 4.3 for 3-SAT instances). This is due to the
structure of lattice SAT instances which turned out to be almost all unsatisfiable at
the critical ratio.
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Figure 6.2: Characteristic path length L, clustering C' and proximity ratio y for in-
stances generate by morphing from a lattice SAT instance and a random SAT instance
of 500 variables and 1500 clauses. Observe that the maximum of p approximately
corresponds to the instances with maximal discrepancy between L and C.

In the next sections we present the results obtained by solving the generated
instances both with a complete solver and local search algorithms.

6.2 Solving with Systematic Search

As a complete solving procedure we chose BerkMin [95], one of the most efficient
complete SAT solvers available nowadays. The search cost has been evaluated as
the number of variable assignments performed by the algorithm before solving the
instance. In Fig. 6.3 the search cost for every set of instances is plotted along with
the proximity ratio curve. We clearly observe that, after few perturbations the small-
world property appears, as proved by the proximity ratio curve maximum. The
scattered points representing the search cost follow approximately the same behavior
as the proximity ratio. Therefore, we can attribute a higher search cost to small-world
instances. This conjecture is confirmed by the correlation between search cost and
proximity ratio, shown in Fig. 6.4: the higher the proximity ratio, the higher the
search cost.

6.3 Solving with Local Search
We also solved the same benchmarks with two local search algorithms, namely Walk-

SAT! [199] and GSAT [200]. Results are shown in Fig. 6.5 and Fig. 6.6 respectively.
In each plot we reported the number of successes (out of 1000 runs) and the proximity

IThe variable to flip has been chosen with the following heuristic: flip the variable with the
highest GSAT-like score if it is not the most recently flipped, otherwise choose at random.
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Figure 6.5: Success rate (out of 1000 runs) of WalkSAT on instances gradually inter-
polating between lattice SAT and random SAT. The proximity ratio (rescaled) is also
plotted.

ratio. Results are not as clear as in the previous case, nevertheless some clues are
present. Considering the results obtained with WalkSAT, we note that in the proxim-
ity of the small-world region, are located some among the hardest instances (indeed,
the success rate is the lowest). This behavior is particularly apparent on the 200-600
instances, where the lowest success rate instances are located approximately around
the maximum proximity. Nevertheless, the correlation between number of success
out of 1000 runs and the proximity ratio does not confirm the hypothesis. Indeed,
as can be observed from the plots in Fig. 6.7, the correlation is even in contradiction
with the previous results on systematic search. The case of GSAT is different. GSAT
performance is not as good as the WalkSAT one, since it always reach a lower success
rate. Nevertheless, we can observe that the most difficult instances are located in the
small-world region?. The correlation between success rate and proximity ratio is plot-
ted in Fig. 6.8. In this case we can observe a negative correlation between proximity
ratio and success ratio, i.e., the higher the proximity ratio, the harder the instance.
At the present, we can not claim any generality from these experiments and fur-

2The 800-2400 instances are indeed not solved in the range corresponding to small-world.
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plotted.
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ther investigations are needed. If the conjecture on the positive correlation between
instance hardness and proximity ratio is true, then the phenomenon may be explained
considering the locality of decisions taken by the heuristics, as supposed in [230]: a
locally good decision taken w.r.t. the clustering properties might be wrong with re-
spect to the whole graph. This investigation open an interesting research direction
concerning the analysis, comparison and design of effective heuristics.

Furthermore, a relevant research issue is the study of the relations between con-
straint graph properties (in this case, small-world) and characteristics of the search
space.



Chapter 7

Work in Progress

In the following sections we will briefly illustrate a personal view of some connections
between metaheuristics (mainly trajectory methods) and tree search along with some
preliminary ideas and concepts that concern on-going work.

7.1 Integration of Metaheuristics and Complete Search

The integration of metaheuristics and systematic algorithms has recently produced
very effective algorithms especially when applied to real-world problems. Discus-
sions on similarities, differences and possible integration between metaheuristics and
systematic search can be found in [76, 85, 107, 90]. A very successful example of
such integration is the combination of metaheuristics and Constraint Programming
(CP) [65, 171, 172, 36]. CP enables to model a COP by means of variables, do-
mains! and constraints, which can be mathematical or symbolic (global). The latter
ones involve a set of variables and describe subproblems, thus reducing the modeling
complexity by encapsulating well defined parts of the problem into single constraints.
Every constraint is associated to a filtering algorithm that deletes those values from
a variable domain that do not contribute to feasible solutions. A CP system can
be seen as the interaction of components (constraints) which communicate through
shared variables. Constraints are activated as soon as a the domain of any variable
involved has been changed. Then, they perform a propagation phase, i.e., they apply
the filtering algorithm. This behavior stops as soon as there are no more values that
can be removed from the domains or at least one domain is empty (i.e., no feasible
solution exists). Since the complexity of the full constraint propagation is often expo-
nential, the propagation may be not complete, hence, at the end of the propagation
phase, some domains may contain unfeasible values. Hence, a search phase is started,
such as Branch & Bound. A survey on the integration of metaheuristics and CP is
provided in [65].

1We restrict the discussion to finite domains.
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There are three main approaches for the integration of metaheuristics (especially
trajectory methods) and systematic techniques (CP and tree search):

e Metaheuristics are applied before systematic methods, providing a valuable in-
put, or vice versa.

e Metaheuristics use CP and/or tree search to efficiently explore the neighbor-
hood.

e A “tree search”-based algorithm applies a metaheuristic in order to improve
a solution (i.e., a leaf of the tree) or a partial solution (i.e., an inner node).
Metaheuristic concepts can also be used to obtain incomplete but efficient tree
exploration strategies.

The first approach can be seen as an instance of cooperative search and it repre-
sents a rather loose integration. The second approach combines the advantages of a
fast search space exploration by means of a metaheuristic with the efficient neighbor-
hood exploration performed by a systematic method. A prominent example of such a
kind of integration is Large Neighborhood Search and related approaches [201, 29].
These approaches are effective mainly when the neighborhood to explore is very
large. Moreover, many real-world problems have additional constraints (called side
constraints) which might make them unsuitable for usual neighborhood exploration
performed by metaheuristics. For instance, time windows constraints often reduce
the number of feasible solutions in a neighborhood and could make local search not
efficient, thus domain filtering techniques can effectively support neighborhood explo-
ration. More examples can be found in [171, 172, 65]. The third approach preserves
the search space exploration based on a systematic search (such as tree search), but
sacrificing the exhaustive nature of the search [85, 107, 108, 151]. The hybridization
is usually achieved by integrating concepts and machinery developed for metaheuris-
tics (e.g., probabilistic choices, aspiration criteria, heuristic construction) into tree
search methods. For example, instead of a chronological backtracking, a backjump-
ing based on search history or information retrieved from local search samples can
be performed. Another prominent example is the introduction of randomization in
systematic techniques, as described in [96]. Many examples of this approach can be
found in [65, 126, 196, 38, 176, 37].

7.1.1 Local Search vs. Nonsystematic Backtrack Search

Trajectory methods share some common characteristics with nonsystematic back-
tracking techniques. In fact, they both concentrate on promising areas of the search
space and they are not complete. The latter ones are based on a search tree, whilst
the former ones usually use memory in an unstructured way.

Typically, nonsystematic backtracking techniques [107, 108, 176] do not apply a
chronological backtracking, but they backtrack to nodes suggested by a heuristic with
the aim of exploring first the most promising areas of the search space and to avoid
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Local Search explores the leaves

Figure 7.1: A pictorial representation of the search process performed by nonsystem-
atic backtracking techniques and trajectory methods.

to be penalized by wrong earlier choices. Trajectory methods have almost the same
goal, since they concentrate on the most promising areas of the search space and they
are free to retract any past assignment. Figure 7.1 exemplifies the relation between
the two approaches by enlightening that trajectory methods move along the fringe of
the tree used by nonsystematic backtracking techniques.

Two are the main differences between the two approaches:

- Trajectory methods usually do not make use of a structured memory, but rather
they exploit the search history by means of some of its features.

- Nonsystematic backtracking techniques usually do not exploit the auto-cor-
relation of the search landscape?, i.e., they do not explicitly take into account
that two solutions that are close may differ only slightly in the objective function
value.

Limited Discrepancy Search (LDS) [108] is a tree search particularly suitable for
modifications in the direction of trajectory methods. LDS explores a binary search
tree by means of a heuristic that suggests which branch to take at each decision point.
We will call reference solution the leaf reached by following all the heuristic decisions.
The algorithm explores the leaves (solutions) in increasing values of discrepancy (k)
from the heuristic: it chooses all the branches suggested by the heuristic, except for
k (see Fig. 7.2). The intuition behind this strategy is that, if the heuristic is good, it
will suggest the wrong branch very few times. Therefore, it is more likely to find the
optimal (or near-optimal) solutions very close to the reference solution.

LDS does not take into account the objective function and the correlation among
solution values, i.e., it does not include intensification mechanisms such as hill-
climbing. We introduced into LDS this mechanism, which is typical of local search,

by allowing the dynamic changing of the reference solution. As soon as a better

2See Chap. 2
3These ideas have been introduced in [151].
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Figure 7.2: Tree exploration performed by LDS. On the left, the path suggested by
the heuristic is explored. On the right, the leaves at discrepancy 1 from the reference
solution are explored.

Algorithm 24 Climbing Discrepancy Search
k < 1 {k is the discrepancy}
kmaa: —n
s* « InitialSolution() {s* is the reference solution proposed by the heuristics}
while k < k.4, do
Generate all leaves at discrepancy k w.r.t. s*: Leaves(s*, k)
s' + BestOf(Leaves(s*, k))
if f(s') < f(s*) then
s* + s' {the new solution substitutes the reference one}
k<1
end if
k<—k+1
end while

solution is found, it is accepted as reference solution and (possibly) & is reset. This
algorithm, that we called Climbing Discrepancy Search, is sketched in Alg. 24.

CDS indeed visits the solutions in the same order as Variable Neighborhood De-
scent (introduced in Sec. 2.3), provided that VND uses neighborhoods at increasing
Hamming distances.

CDS has been proved more effective than LDS on preliminary experiments per-
formed on random MAXSAT instances, reaching the optimal solution by exploring a
considerably lower number of nodes.

CDS can be generalized by observing that the algorithm has two degrees of free-
dom: the choice of the solution among the set of leaves at discrepancy k from the
reference solution (Choose()) and the acceptance criterion used to decide whether the
chosen solution has to be accepted as the new reference one (Accept()). By specializing
the functions Choose() and Accept(), we can obtain variants of CDS. The generalized
version of CDS is reported in Alg. 25.

Observe that local search methods are characterized by the interplay of the func-
tions Choose() and Accept(). For instance, Iterative Improvement chooses the best
solution in the neighborhood and always accept it. Simulated Annealing chooses
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Algorithm 25 High level generalized CDS
k + 1 {k is the discrepancy}
s* « InitialSolution() {s* is the reference solution proposed by the heuristics}
while Termination condition not met do
Generate all leaves at discrepancy k w.r.t. s*: Leaves(s*, k)
s' « Choose(Leaves(s*, k), history)
if Accept(s’) then {if the new solution is accepted}
s* « s’ {the new solution substitutes the reference one}
k+1
end if
k<—k+1
end while

at random a solution within the current neighborhood and accepts it with a proba-
bilistic criterion. Another example is given by Tabu Search, which chooses the best
solution in the neighborhood and accepts it depending on tabu and aspiration criteria.
Therefore, variants of CDS can be designed by explicitly introducing ingredients from
trajectory methods. Examples of such integration are given in Alg. 26 and Alg. 27,
where a discrepancy-based Simulated Annealing and a discrepancy-based Tabu Search
are respectively sketched.

The effectiveness of these algorithms have to be tested on several benchmarks and
this experimental work is part of future research.

7.1.2 Ant Colony Optimization vs. Climbing Discrepancy Search

In this section we introduce some considerations about the relations between ACO
and CDS. Subject of current work is the design, implementation and testing of hybrid
metaheuristics based on these concepts.

The observations that follow are valid under these assumptions*:

e we restrict ACO to the pheromone-based solution construction mechanism;

e we suppose pheromone is on components and that the probability of adding a
component to the current partial solution depends only upon the pheromone
value of that component;

e we consider the basic version of CDS, where as soon as a better solution is
found, it is accepted as the new reference one;

e finally, we consider binary trees.

To exemplify this case, we suppose to tackle MAXSAT. Solution components
are assignments and pheromone is associated to components. If we represent the

4even though they can be also generalized
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Algorithm 26 Discrepancy-based Simulated Annealing
k<1
Set knmaz
s* < InitialSolution()
while k < k4, do
Generate all not yet explored leaves at discrepancy k w.r.t. reference solution s*:
Leaves(s*, k)
while Leaves(s*, k) # 0 and No solution is accepted do
Extract randomly a leaf s’ from Leaves(s*, k)
q = random(0,1), p = ewp(—w)
if f(s*) < f(s") or ¢ < p then
s* &'
k<1
end if
end while
E+—k+1
end while

Figure 7.3: Search tree of the ACO solution construction. Labels on arcs reports
the pheromone values of the corresponding assignments (for simplicity, we suppose
pheromone values in the range ]0,1[).

search along a tree and we label arcs with the pheromone value of the corresponding
assignment®, we end up with a tree such as the one depicted in Fig. 7.3.

Ants use the pheromone values to construct a solution, i.e., they use pheromone
as a guide to select a path along the search tree, from the root to a leaf. If the
choice at the decision points was deterministic, all the ants would select the path
with the highest pheromone values (as depicted in Fig. 7.4), in the same way as the
construction of the reference solution in CDS (considering the pheromone values with
the same role as the heuristic in CDS).

However, since the choice is probabilistic and the higher the pheromone value on
a branch, the higher the probability to select that branch, the solutions constructed
by the ants (i.e., the explored leaves of the tree) will share many of the assignments
corresponding to the highest pheromone values, but some will be different. In other

5For simplicity, we suppose pheromone values in the range ]0,1].
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Algorithm 27 Discrepancy-based Tabu Search
k+1
Set knmaz
s* < InitialSolution()
while k < k4, do
Generate all not yet explored leaves at discrepancy k w.r.t. reference solution s*:
Leaves(s*, k)
AllowedSet + {z € Leaves(s*, k)}
if AllowedSet # () then
s* + BestOf(s* AllowedSet) {the new solution substitutes the reference one}
kE+1
else
kE—k+1
end if
end while

Figure 7.4: Search tree of the ACO solution construction. In bold, the path traced
by following the highest pheromone values.

words, ants will construct solutions with different degrees of discrepancy from the
reference solution. It is important to observe that the higher the discrepancy of a so-
lution, the lower the probability of its construction. Therefore, we can assert that ants
provide a kind of stochastic discrepancy search: they mainly concentrate around the
reference solution, by preferring the exploration of solutions at low discrepancy from
it, but they also have non zero probability to explore solutions at high discrepancy
from the reference solution.

An important difference between the two algorithms concerns the strategy used
for exploring the ‘neighborhood’ of the reference solution. This difference can be
described in terms of intensification and diversification. In CDS, solutions at increas-
ing discrepancy from the reference are explored: CDS deterministically increases the
exploration radius, thus it proceeds from low to high diversification. At the other
extreme, ACO first explores a large area (indeed, pheromone values are not strongly
differing in the first phases of the search) and then it converges to one solution (ide-
ally). Therefore, ACO follows the inverse pattern: first the highest diversification,
then almost no diversification.

Moreover, note that, while in ACO the pheromone values are smoothly changed
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toward a better solution found, in the basic version of CDS the reference solution is
completely changed as soon as a better solution is found.

It should also be noted that ACO usually uses both pheromone and heuristic to
guide the solution construction. In the first cycles of the algorithm, the heuristic is the
strongest guidance, since pheromone values are still not much differentiated. Then,
pheromone increases its influence and enables the search to exploit the search history.
In CDS, the search history is exploited in the reference solution update mechanism,
which, in its basic version, exploits only the most recent history.

The similarities and difference just discussed, suggest some possible integrations
of mechanisms from ACO and CDS. In order to enable CDS to exploit the search his-
tory, the algorithm can be modified by introducing ‘pheromone values’ to implement
a kind of distributed memory. Like in ACO, the rules that manage pheromone update
define the strength of past decisions on the present. Furthermore, CDS can start with
more than one reference solution and explore the neighborhoods of all of them and
eventually converge toward the most promising one. CDS is typically deterministic,
but randomization can also added. For instance, instead of deterministically increas-
ing the discrepancy, probabilities can be assigned to the decision points, favoring the
choice of lower discrepancy paths, but, at the same time, allowing the choice of leaves
at higher discrepancy.

On the other side, ACO can be enriched by introducing some components from
discrepancy search. First of all, a coordination mechanism can be used in order
to prevent different ants from constructing the same solution, thus optimizing the
computational resources with respect to the exploration of the search space®. This
modification goes into the direction of reducing the randomness in ACO. Moreover,
the intensification/diversification pattern in ACO can be inverted, by first favoring
low diversification and increasing it during the computation. Of course, this choice
needs a particular care, since it makes the metaheuristic unable to converge to a
solution, which is often a required characteristic in approximate algorithms.

Finally, while tree search can make use of constraint propagation, this has not
yet been tried for ACO. Indeed, ants can include constraint propagation in their con-
struction procedure and thus reduce the search space.

60bserve that, depending on the pheromone updating rules, if a solution is constructed more
than once, it may receive a greater amount of pheromone, thus it will be more favored in the future.



Chapter 8

Conclusion

The design and implementation of effective and efficient algorithms to tackle large real-
world problems is nowadays a very active research field. Metaheuristics have been
proven powerful and effective, though only in recent years researchers have started to
systematically study metaheuristic algorithms and their performance.

In this thesis we have presented and described metaheuristics, focusing on their
applications on SAT and MAXSAT problems. Moreover, we have discussed the impact
of problem structure on algorithm behavior by studying how some constraint graph
properties affect the search performance.

In the following, we briefly outline the main contributions of this work:

e We have first given a survey on metaheuristics, by introducing the most im-
portant algorithms, their variants and improvements. We have underlined the
importance of intensification and a diversification and shown that metaheuris-
tics can be conceptually analyzed on their basis.

e We have introduced a multi-level architecture that enables the design and im-
plementation of metaheuristics in a component-based fashion, moving the focus
from the algorithmic and conceptual viewpoint, to the software engineering
standpoint. The architecture is organized in four levels: the first is devoted to
the solution construction, the second to the improvement of the solution, the
third to the implementation of long term strategies for intensification and di-
versification and the fourth is needed for coordinating lower levels. Algorithmic
components are encapsulated in software agents.

e The issues of algorithm design and implementation are considered in the novel
application of two metaheuristics to MAXSAT problems. We presented the
development and implementation of Ant Colony Optimization (ACO) and of
TIterated Local Search (ILS) metaheuristics. We also discussed design issues and
choices, along with experimental results. We achieved particularly good results
with Iterated Local Search.

155



156 CHAPTER 8. CONCLUSION

e The observation of the behavior of metaheuristics on different sets of instances
shows that the same algorithm may perform very differently on different kinds
of instances. Moreover, the design of metaheuristics which effectively tackle
real-world problems requires the study of the impact of problem structure on
metaheuristic behavior. We dealt with this topic in the context of SAT and
MAXSAT problems. We have first defined the structure of SAT/MAXSAT on
the basis of a graph associated to the instances. This approach enables us to
extract general properties of SAT and MAXSAT problem structure.

We then studied the influence of some graph properties, in particular average
connectivity and frequency of node degree, on parallel local search. We have
found empirical evidence for the presence of an optimal number of parallel local
moves that enables the algorithm to achieve the highest effectiveness. We found
also that the optimal number of parallel moves is negatively correlated with the
connectivity among variables. Furthermore, we have studied this phenomenon
in detail, by analyzing random, structured and constant-connectivity instances.
The results obtained can give insight into the Criticality and Parallelism phe-
nomenon and into the behavior of trajectory methods on SAT/MAXSAT prob-
lems. Moreover, this study enabled us to improve the ILS metaheuristic applied
to MAXSAT.

Finally, we also investigated the hardness of small-world SAT instances (those
with low characteristic path length and high clustering), finding interesting
results which may support the conjecture that small-world instances are among
the hardest to solve for both approximate and complete algorithms.

e We have concluded by outlining topics of our current research which tries to
combine metaheuristics and tree search. The most relevant approaches relate
to the integration of metaheuristics into discrepancy search, leading to the al-
gorithm called Climbing Discrepancy Search and its variants. Moreover, the
exploitation of pheromone based search in algorithms based on a search tree is
a very promising subject concerning the integration of approximate and com-
plete techniques.

The study of relations between structure and algorithm behavior is still a partially
unexplored area. We briefly summarize some open questions:

- In this thesis we have just investigated one of the possible ways of characterizing
structure. Other definitions for graphs are possible (such as weighted graphs),
to capture different problem features.

- The relations between problem structure and search landscape should be inves-
tigated, in order to achieve an effective control of strategies and heuristics.

- Concerning Criticality and Parallelism, formal relations between connectivity
and optimal parallelism have not yet be found. Moreover, the combination of
parallel local moves and noise into local search has been proven very effective
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in preliminary experiments we performed and this integration has still to be
studied in detail.

Finally, results and concepts discussed in this thesis may be effectively extended
to tree search algorithms. For example, we may ask whether a kind of Criti-
cality and Parallelism phenomenon can be discovered also in systematic search.
Furthermore, the study of properties of graph associated to problem instances
is not restricted to the application of metaheuristics, but it can be also extended
toward systematic search and the integration of approximate and complete tech-
niques.
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