
Extending CLP(FD) with Interactive Data

Acquisition for 3D Visual Object

Recognition
M.Gavanelli, E. Lamma, P.Mello, M. Milano

DEIS, Univ. Bologna,

Viale Risorgimento 2 I-40136 Bologna, Italy.
E-mail: felamma, mgavanelli,pmello,mmilanog@deis.unibo.it

M.Piccardi R.Cucchiara

Dip. Ingegneria, Univ. Ferrara, Univ. Modena,

Via Saragat, 1 - 44100 Ferrara, Italy. Via Campi, 312 - 41100 Modena, Italy.

E-mail:mpiccardi@ing.unife.it E-mail: rita.cucchiara@unimo.it

Abstract

This paper addresses the 3D object recognition problem modelled as a Con-

straint Satisfaction Problem. In this setting, each object view can be modelled

as a constraint graph where nodes are object parts and constraints are topolog-

ical and geometrical relationships among them. By modelling the problem as a

CSP, we can recognize an object when all constraints are satis�ed by exploiting

results from the CSP �eld. However, in classical CSPs variable domains have

to be statically de�ned at the beginning of the constraint propagation process.

Thus, not only feature acquisition should be completed before the constraint

solving process starts, but all image features should be extracted even if not

belonging to signi�cant image parts. In visual applications, this requirement

turns out to be ine�cient since visual features acquisition is a very time consum-

ing task. We present an Interactive Constraint Satisfaction model for problems

where variable domains may not be completely known at the beginning of the

computation, and can be interactively acquired during the computational pro-

cess only when needed (on demand). The constraint propagation process works

on already known domain values and adds new constraints on unknown domain

parts. These new constraints can be used to incrementally process new infor-

mation without restarting the constraint propagation process from scratch each

time new information is available. In addition, these constraints can guide the

feature acquisition process, thus focussing attention on signi�cant image parts.

We present the Interactive CSP model and a propagation algorithm for it. We

propose an implementation of the framework in Constraint Logic Programming

on Finite Domains, CLP(FD).

1 INTRODUCTION

Constraint Satisfaction systems provide a simple but powerful framework for solving

a variety of Arti�cial Intelligence (AI) problems. Constraint Satisfaction Problems

(CSP, for short in the following) are de�ned on a �nite set of variables each ranging on

a (numerical or symbolic) domain and a set of constraints. We assume variable domains

to be �nite. A solution to a CSP is an assignment of values to variables which satis�es

the constraints. Propagation algorithms [10] (e.g., forward checking, look ahead etc.)

have been proposed based on the active use of constraints during the search process.

The idea is to remove, during search, by means of constraint propagation, combination

of assignments which cannot appear in any consistent solution.

A CSP-based inference engine has been successfully used in many applications. In

this paper we focus on a 3D object recognition application where a low level system

provides a large amount of (constrained) data to be processed, i.e., visual features

of objects in an image. Several examples of CSP-based reasoning systems have been

proposed for object recognition (see for instance [15, 17, 24, 18]). Visual applications

usually require some form of interaction between a low level module (image proces-

sor and feature extractor) providing (constrained) data, and a constraint solver. In

classical CSPs, variable domains have to be completely known before the constraint

propagation process starts. Data acquisition and its processing are sequentially per-

formed thus leading to an ine�cient behaviour of the whole system especially when

the data acquisition process is computationally expensive. For example, a CSP module

interacting with a low level visual system should �rst acquire all the visual features

in the scene (thus requiring the low level system to process the whole image) in order

to create variable domains, and then start the constraint propagation process for ob-

ject recognition. In a vision system the data extraction phase is very time-consuming:

usually it is much more computationally expensive than the constraint solving phase.

We argue that interleaving the acquisition of domain values and their processing

could greatly increase the performances of the object recognition process. Domain value

acquisition can be performed on demand only when values are e�ectively needed. This

approach can be seen as a kind of lazy domain evaluation. Lazy evaluation [9] is known

as a parameter evaluation mechanism which avoids a computation if its resulting value

will never be used. Similarly, we avoid to consider values for constraint propagation

if they are not needed. This idea has been already exploited in the �eld of constraint

satisfaction in [2, 22] where as soon as one consistent value is found, the propagation

stops in order to perform a minimal number of constraint checks.

Furthermore, a fundamental point which can be exploited in our framework is that

the acquisition process can be guided by constraints, called interactive constraints, thus

leading to retrieve only consistent values and minimizing useless data acquisitions. In a

visual system, this feature allows to focus the attention of the feature extraction module

on a restricted part of the scene, by propagating spatial and topological constraints;

second, to constrain the feature space and assist the computation of visual features.

Therefore, a CSP system should be able not only to prune the data set after it has

been computed, but also to guide the data acquisition process.

For this purpose, we present an Interactive Constraint Satisfaction [21] model where

domains can be partially known when the constraint satisfaction process starts and are

dynamically acquired during the computation. We apply this framework to a 3D object

recognition application.

A powerful language for modelling and solving CSPs is Constraint Logic Program-

ming (CLP) [14]. In recent years CLP has been successfully used for solving hard com-

binatorial problems [3, 4, 10] modeled as Constraint Satisfaction Problems (CSPs). In

this paper, we focus on Constraint Logic Programming on �nite domains, hereinafter

referred to as CLP(FD). We have implemented the interactive framework on top of

the �nite domain library of the ECLiPSe language [6]. The extension of the constraint

solver is aimed at coping with interactive constraints and partially or completely un-

known domains.

The paper is organized as follows: in section 2 we show how to model the object

recognition problem as a CSP. In section 3 the interactive CSP framework is described

along with the interactive version of the Forward Checking algorithm presented in

section 4. The extension of the ECLiPSe CLP(FD) library is sketched in section 5.

Finally, section 6 shows the application of the framework to a 3D object recognition

problem and experimental results. A discussion and a mention of future work conclude

the paper.

2 MODELLING OBJECTS THROUGH CONSTRAINTS

3D object recogition involves two steps: object model building and model solving. We

adopt a constraint based approach to object recognition. Thus, objects can be modeled

by means of constraints, and recognized by means of constraint satisfaction.

In this section, we focus on model building by de�ning a general and reliable object

model, in order to result possibly invariant to roto-translation in 3D space, to distance

object-camera and other environment factors. As a consequence, the object model

cannot be limited to a matching of measured features to absolute values previously de-

�ned, but should be based on geometric and topological relationships between features

[5, 23]. Each object we want to recognize can be represented by means of a constraint

graph where each object part or characterizing primitive feature is modeled by a node

(variable) of the corresponding CSP and spatial or shape relations among object parts

can be represented by arcs (constraints).

Speci�c aspects of the single primitives may be modeled as unary constraints, such

as the minimum length of an object part, its colour, the planarity of a surface and so

on, while geometric and topological relationships between them can be represented by

binary constraints (e.g., angular relationships between contours, lines, or surfaces, or

spatial relationships, such as is connected to, touch, is contained).

As an example, if we want to model the L-shaped object shown in Figure 2.a we

shall have a node corresponding to each surface (named respectively X1,. . . , X6) and

will impose the constraints depicted in the graph in the same �gure This graph model

corresponds to a single view of the object.

Some of these constraints are redundant. This redundancy is useful when con-

straints are propagated by means of an incomplete algorithm such as for example

arc-consistency.

Note that in 3D object modelling, we have the problem of multiple views and

occlusion. We are developing an observer-independent model for 3D object, by using a

single object graph and exploiting hiding constraints for non visible parts. This aspect

will be brie
y described in section 2.1, and it is subject of current research.

Suppose the vision system provides all the information about the surfaces in the

scene. Therefore, each variable of the object model ranges on a domain containing

all the surfaces. We can perform a straightforward but ine�cient backtracking algo-

rithm in order to �nd a solution. Since we model objects by means of constraints,

we can exploit constraint propagation in order to prune the search space. Therefore,

we intertwine a propagation process that removes combinations of assignments which

cannot appear in any consistent solution, i.e., which cannot form an L-shaped object,

and a labeling strategy that assigns to each variable a value (a possible segment). If

a solution is found, we have identi�ed the searched object in the scene, i.e., values for

variables (surfaces composing the model) which are consistent with constraints.

2.1 Multiple view graph

By means of constraint satisfaction we can recognize a set of surfaces extracted from

the image as a speci�c view of the 3D object. Since objects should be recognized

from each point of view, a possible approach is to de�ne a set of view-based constraint

graphs, one for each object pose, and to �nd a constraint satisfaction solution for at

least one of them. This technique is not particularly e�cient; moreover the problem

of de�ning the minimum set of reliable view models arises. Conversely, we propose

an object-centered topological model, independent from the observer point of view.

The model represents all surfaces forming the object as nodes and surface relations

as constraints. The corresponding graph cannot merely be satis�ed by the surfaces

extracted from the image, since, for each point of view, only a subset of surfaces are

visible.

Instead of modifying the constraint graph by relaxing some constraints on the basis

of the observer point of view, we satisfy the constraints between visible surfaces and

add to the object model virtual surfaces and visual constraints representing object part

that are not visible from that point of view. The object model can be de�ned as a

Visual Constraint graph, called VC-Graph.

A VC-Graph is a graph composed by X1, . . . , Xn nodes representing all object

surfaces. Each node has an associated domain D1, . . . , Dn representing surfaces which

can be assigned to the node. Arcs of the VC-graph are constraints between surfaces.

In order to allow the match between the modeled object and surfaces retrieved from

the image, we introduce virtual surfaces, which should be inserted in the domain of

variables representing not visible surfaces. Thus, Di contains S1, . . . , Sm the set of

real surfaces and S 0

1
, . . . , S 0

m the set of virtual surfaces, opposite to real surfaces, and

that are not visible when the corresponding real surface is visible. As a consequence,

we should de�ne constraints representing the fact that two surfaces cannot be viewed

at the same time and the fact that a surface could partially occlude another. We call

these surface relations visual constraints.

More formally, hide(X1,X2) states that X1 and X2 cannot be visible at the same

time (it arises when two surfaces have an opposite normal as S1 and S8 in Figure

1); occlude(X1,X2) means that X1 may partially occlude X2 (as happens for S6 and

S4 in Figure 1). This causes a relaxation of unary constraints on X2 (in Figure1

Is Rectangle(S4) is not satis�ed if S4 is occluded by S6). For example, consider the L-

shaped object of �gure 1 . The corresponding VC-graph is depicted in Figure 1 (where

both topological and visual constraints are indicated). Suppose our view of the object

is the one in Figure 1a. The model is satis�ed if we assign to variable X1 the L-shaped

surface S1, to X3,X4,X5, and X6 surfaces S3, S4, S5 and S7 respectively and to X2, X7

and X2 the virtual surfaces S4', S3', and S1' that satisfy the visual hiding constraint.

With the VC-graph we can completely describe an object from each point of view: each

single-view constraint graph is a sub-graph of the VC-graph. The nodes of a single-

view sub-graph represent visible surfaces and the correspondent nodes in VC-Graph

match real surfaces; instead, nodes absent from the sub-graph are non-visible surfaces

represented by virtual surfaces.

Figure 1: VC-Graph of the L-shaped object

3 INTERACTIVE CSP

In the previous section, we have presented how to model objects by means of con-

straints. Thus, we can use constraint satisfaction techniques in order to recognize an

object. The problem with this kind of representation concerns the fact that we have

to acquire from the vision system all the information about surfaces in the scene be-

fore processing them. The feature extraction, specially in 3D visual applications, is a

computationally expensive task if compared with the constraint satisfaction process.

Constraints expressing locality (such as touch) can be exploited in order to focus the

whole system's attention on a limited image part, thus avoiding feature extraction on

most of the image surface. Selective attention is a fundamental skill of biologic vi-

sion systems, since every image contains huge quantities of data and processing all of

them would be unwise. We propose an alternative approach, based on what we call

Interactive Constraint Satisfaction framework, that intertwines the vision feature ac-

quisition with the constraint satisfaction process thus reducing the feature extraction

computational cost.

We �rst start by giving some preliminaries on CSPs. A CSP is de�ned on a set

of variables X1; : : : ; Xn ranging respectively on �nite domains D1; : : : ; Dn. A

constraint c(Xi1; : : : ; Xik) de�nes a subset of the cartesian product of Di1 ; : : : ; Dik ,

i.e., a set of con�gurations of assignments which may appear in a consistent solution.

In this paper, we focus on binary CSPs. A binary CSP can be represented by means

of a constraint network where each node is a variable and arcs are constraints.

A standard constraint solver needs all the information and the knowledge on the

problem at the beginning of the computation. Then it propagates constraints by remov-

ing assignments which cannot appear in any consistent solution. The interaction with

a low level system, and the consequent propagation, requires a data acquisition process

which lasts during the whole computational process. Therefore, we have to change the

classical CSP model, and allow the propagation algorithm to work on partially known

domains.

To this purpose, we de�ne an Interactive CSP (ICSP) model [21] which has to

cope with incomplete domains. Domains can be partially known in the sense that

some domain elements can be already at disposal for propagation, while other domain

elements have to be acquired from a low level system in the future. The strength of

this approach concerns the fact that the ICSP system can guide data acquisition by

means of constraints, and incrementally process new information without restarting a

constraint propagation process from scratch each time new data are available.

On the basis of these requirements, we de�ne the ICSP model as follows:

De�nition 1 An Interactive CSP (ICSP) is de�ned on a set of variables fX1; : : : ; Xng
each ranging on a partially known domain fD1; : : : ; Dng where each Di = fKnowni [
UnKnownig. Knowni represents the known part, i.e., the set of available values, while

UnKnowni represents information which is not yet available, i.e., the set of values will

be retrieved in the future. Both Knowni and UnKnowni can be possibly empty1.

Also, for each i, Knowni \UnKnowni = ;. An interactive constraint among variables

de�nes a (possibly partially known) subset of the cartesian product of variable domains.

A solution to the ICSP is, as for standard CSPs, an assignment of values to variables

which is consistent with constraints.

Constraint propagation is quite di�erent from the standard case. Consider, for the

sake of clarity, only binary constraints c(Xi; Xj). In the most general case, both Xi

and Xj domains contain a non empty known and unknown part. In order to propagate

the constraint c(Xi; Xj) we have to propagate four kinds of constraints, respectively

between the known and unknown parts of variable domains:

c(Knowni; Knownj), c(Knowni; UnKnownj)

c(UnKnowni; Knownj), c(UnKnowni; UnKnownj)

and collect the propagation results2. While the constraint check on known parts can be

performed as usual, the check on at least one unknown part requires a data acquisition

in order to acquire new information. In addition, the data acquisition can be guided

by means of interactive constraints in the sense that data acquisition retrieves values

which are consistent with constraints.

Let us see a simple example in the domain of integers. Consider two domain

variables X and Y ranging respectively on the following domains f1; 3g [X1 and

f�6; 4g [Y 1. The known part of the domain of X contains two values f1; 3g, while
its unknown part, X1, represents not yet available values for X. Similarly, the known

1When both are empty an inconsistency arises.
2We refer, with abuse of notation, to domains instead of variables. However, the meaning is

straightforward.

and unknown part of the domains of Y are f�6; 4g and Y 1 respectively. A constraint

between X and Y , say X � Y , is satis�ed if and only if variables X and Y assume

consistent values in their known part (e.g., X = 1 and Y = 4 or X = 3 and Y = 4) or

if the data acquisition process provides consistent values for the variables.

We now present intuitively how the constraint propagation algorithm works on the

above example. Then, we sketch and explain the pseudo code that implements it.

Constraint propagation between the known part of the constraints can be performed

as usual. Note that no values however can be removed if both variable domains are

partially known since they could be supported by future acquisition. The ICSP com-

putation starts with a labeling step, as in CSP search. Instead, the consistency check

between values 1 and 3 for variable X and the unknown part of variable Y , i.e., Y 1,

calls for a data acquisition that is aimed to collect at least one value for Y which is

consistent with the known part of the domain of X. In other words, the system collects

for variable Y at least one value which is greater or equal to 1 or 3. This is equivalent

to pose a constraint on the unknown part of Y , e.g., 1 � Y 1 _ 3 � Y 1 and guide

the data acquisition by means of these constraints by asking the low level system for

those values that satisfy the above mentioned constraints. Similarly, the constraint

propagation acts on the unknown part of X and the known part of Y . Finally, the

constraint between unknown parts will check new acquired values as soon as they will

be available.

In Figure 2 we sketch the pseudo-code for binary constraint propagation in the

interactive framework. The procedure propagate constraints works on a constraint c

in order to reduce variable domainsD. We have to distinguish three cases: the �rst case

concerns the classical constraint propagation when both variables present a non-empty

known part (procedure propagate known). The second case regards the propagation

between an unknown part and a known one (procedure propagate partially known).

In this case, an acquisition should be performed which can be guided by the constraint

itself on the basis of values contained in the known part of the domain. Procedure

propagate partially known queries the low level system in order to retrieve for variable

Y only values consistent with the known part of X. The last case concerns a constraint

propagation on two unknown parts (procedure propagate unknown). In this case the

constraint is delayed since the knowledge acquisition could not be guided by any known

value. The delayed constraint on UnKnown domain parts guarantees that future

acquisitions will be consistent with constraints.

Note that constraints on at least one unknown part intensionally represent potential

solutions on not yet acquired data.

An interesting point concerns data acquisition. Data acquisition is guided by con-

straints containing one variable (we will call it guiding variable) which has a partially

or fully known domain and one variable (we will call it guided variable) whose domain

is completely unknown. We have to answer to basically two questions:

� how many values of the guiding variable domain to use in order to guide data

acquisition;

� how many values of the guided variable to acquire;

Basically, a lazy approach tends to minimize data acquisitions, since it's often the most

expensive task (in many problems it involves hard signal processing). Thus, the data

procedure propagate constraints(D,c(A;B))

begin

DA = KnownA [UnKnownA;

DB = KnownB [UnKnownB;

propagate known(KnownA,KnownB);

propagate partially known(KnownA,UnKnownB);

propagate partially known(KnownB ,UnKnownA);

propagate unknown(UnKnownA,UnKnownB);

end

procedure propagate partially known(KnownX ,UnKnownY);

begin

guided acquisition(c(KnownX; UnKnownY));

end;

procedure propagate unknown(UnKnownX ,UnKnownY);

begin

delay(c(UnKnownX ; UnKnownY));

end;

Figure 2: The interactive constraint propagation

acquisition is stopped as soon as one consistent value has been retrieved for the guided

variable and is guided by means of one value in the domain of the guiding variable. On

the contrary, an eager approach collects all consistent values for the guided variable

and guides data acquisition by means of all known values.

The best choice depends on the application we have to solve. In the �eld of object

recognition, domain values come from an image processing and a feature extraction

system, both of which are computationally expensive tasks. For 3D objects images

are range (or depth) images and extracted features are surfaces. This activity greatly

bene�ts of the exploitation of locality criteria that restrict the image part to be pro-

cessed. As soon as a restricted part of an image is selected, retrieving one or all features

belonging to that image part is computationally comparable with the retrieval of only

one feature. Thus, in the visual application, we decided to implement a search al-

gorithm capable of exploiting this property. Data acquisition will be performed by

means of interactive constraints with only one value for the guiding variable (i.e. the

guiding variable will be instantiated) and by retrieving all the consistent values for the

guided variable. This idea leads to implement a Forward Checking-like algorithm, and

is widely explained in the next section. It's worth noting that the ICSP framework

comprises the classical CSP environment; so we are not forced to implement every

constraint the interactive way. Some constraints are useful for interaction; e.g. the

constraints expressing locality in the vision system. Other constraints may be used

only for pruning the search space, as in the CSP case. When a non-interactive con-

straint has to deal with incomplete knowledge, it can simply suspend and wait for the

interactive constraints to acquire the needed information items.

4 INTERACTIVE FORWARD CHECKING

One of the well known and widely accepted propagation algorithms for solving CSPs is

the forward checking (FC) technique [8]. The FC algorithm intertwines a labeling step,

where a variable X is instantiated to a value v in its domain, and a propagation step

where domain variables linked with X by means of constraints are checked in order to

remove values which are not compatible with v.

In our framework, we have to cope with partially known domains. Therefore, the

operational behaviour of the FC algorithm should be changed accordingly. Intuitively,

the �rst labeling step instantiates a variable X to a value v belonging to the known

part of the domain if any. Otherwise, a data acquisition is performed retrieving a

value v which is successively assigned to X. The propagation step considers domain

variables X1; : : : ; Xk linked with X by means of constraints. This step removes from

the known part of X1; : : : ; Xk domain those values which are not consistent with v,

and (eventually) acquires consistent values for the unknown part3.

Note that in the algorithm presented in Figure 2, only the �rst two procedures

(propagate known and the �rst propagate partially known) are performed since for the

forward checking strategy one variable is always instantiated (thus completely known).

Let us consider an example in the �eld of 2D shape recognition. If we want to model

a rectangle we can identify four nodes corresponding to the four edges composing the

rectangle (numbered respectively X1, X2, X3 and X4) and we impose the following

symmetric constraints:

allDifferent([X1;X2;X3;X4]),

touch(X1;X2), touch(X2;X3), touch(X3;X4), touch(X4;X1),

no touch(X2;X4), no touch(X1;X3), same lenght(X2;X4), same lenght(X1;X3),

perpendicular(X1;X2), perpendicular(X2;X3), perpendicular(X3;X4),

perpendicular(X4;X1), parallel(X2;X4), parallel(X1;X3)
4.

We consider only the touch constraint as interactive, because it expresses locality

and allows selective attention. The task is to recognize the �rst rectangle in the scene

depicted in Figure 3.a. Variable domains are segments retrieved from the image.

Initially, the variable domains are completely unknown:

X1 :: UnKnown1, X2 :: UnKnown2, X3 :: UnKnown3, X4 :: UnKnown4.

Figure 3.b shows an IFC computation until success is reached. The IFC algorithm

starts with a labeling step on variable X1. Since the domain of X1 does not contain

any acquired value, the labeling step performs a feature acquisition process (possibly

guided by unary constraints on X1). A segment a in the image is retrieved and assigned

to X1, i.e., X1 = a.

Now, the plain FC algorithm collects all the variables linked to X1 by means of

constraints and removes from their domains all values which are inconsistent with a.

Since the non interactive algorithm requires all the segments to be in the domains at

the beginning of the computation, it has to check value a against all the segments

3This data acquisition is performed or not on the basis of a eager or lazy acquisition policy.
4The constraints perpendicular, parallel and same length have an obvious semantics. The constraint

touch (respectively no touch) means that one ending point of the �rst segment must touch an ending

point of the second one (resp. the ending points must not touch each other).

Figure 3: Example of ICSP computation

in X2's domain (i.e. fa; b; : : : ; lg), before �nding that no value is consistent. The

IFC, instead, does not know the values in the domains of the next variables, so it

requests values consistent with the interactive constraint touch(X1; X2). Note that the

feature acquisition process is guided by the above mentioned constraint exploiting the

locality criteria embedded in the constraint touch. Therefore, the underlying visual

system looks for segments touching a thus focusing attention around it. Only segment

a touches itself, so the domain of variable X2 becomes fag; this value is deleted by the

non interactive constraints allDifferent and an inconsistency is raised. In this case,

the IFC algorithm performs only one constraint check to detect inconsistency.

Computation succeeds when X1 is assigned the value d, as shown in Figure 3.b.

As concerns the number of values to be retrieved, in the forward checking algorithm

we can decide to acquire all values consistent with the currently instantiated variable

or only one value. In the �rst case, the domains of X2 and X4 become completely

known and they are the same as the ones resulting from the classical forward checking

algorithm after the instantiation of X1 to d. In the second case, the domains of X2 and

X4 are left partially known and constraints are imposed on the variables representing

the unknown parts. This second approach is similar to performing a minimal forward

checking algorithm [2] and will be brie
y discussed in section 4.1.

In a visual system environment, we decide to collect all values for variables since

feature extraction exploiting locality criteria is almost independent from the number

of features extracted. Thus, the system collects four segments d, e, g and l5 which are

put in the domains of X2 and X4.

The unknown parts of X2 and X4 are now completely speci�ed and the domain

of X2 and X4 contain all values which touch d. Value d is removed from both these

domains by non interactive constraints. Again, the non interactive FC has to check

the value d assigned to X1 against all the values in the other domains (i.e. all the

segment in the image) to get to the same situation. The interactive, instead, uses the

constraint touch to guide acquisition and the other constraints have only to check the

four acquired values for consistency.

5Note that constraints describing the rectangle are symmetric. Symmetries should be avoided

in a constraint satisfaction procedure [19]. Therefore, in practice, we do not put all the acquired

segments in both domains. In the example, however, for the sake of simplicity, we omit the treatment

of symmetries.

The next labeling phase assigns e toX2; this choice leads to failure and the next step

sets X2 = g. A second constraint propagation process starts by considering all variables

involved in a constraint with X2. Consider the constraint, described in section 2,

between X2 and X3 stating that the two variables represent touching segments, and a

constraint with X4 stating that the two variables should have the same length. The

�rst constraint propagation process results in a feature acquisition, collecting all values

that touch X2, i.e. d, f and g. Note that, again, feature acquisition is focussed around

g and does not need to consider the whole image. These segments are put in the

(known part of the) domain of X3 while the unknown part is deleted. The propagation

step between X2 and X4 is the usual forward checking constraint propagation since the

domain of X4 is completely known. The FC algorithm continues the labeling and the

constraint propagation process as usual since all the domains now are known.

The purpose of the interactive framework is to force the low level system to retrieve

a number of segments which is signi�cantly smaller than those retrieved by a non-

interactive system which �rst collects all segments in an image and then starts the

constraint propagation process. The number of extractions must be kept as small

as possible, since the extraction process is the most expensive task: usually the CSP

solving process employs a negligible computation time w.r.t the feature extraction time.

In order to avoid re-extraction of formerly acquired values (due, e.g., to backtracking),

each extracted element is stored in memory after interaction; in successive computation,

every segment will �rst be searched for in memory and then requested to the low-level

system. Note that the amount of memory required for this structure is proportional to

the number of elements in a domain, which is negligible with respect to the structures

needed by the FC algorithm [8].

In Figure 4, we have sketched the basic Interactive FC algorithm. It �rst selects

a variable V ar to be instantiated, then it performs an interactive labeling (interac-

tive label). This procedure takes a value in the known part of the selected variable

domain if it exists, otherwise it acquires one value for the selected variable (procedure

acquisition var). The procedure collect constraints collects all constraints containing

the selected (instantiated) variable. Then, for each collected constraint, the constraint

propagation algorithm presented in Figure 2 starts. Note that being V ar instantiated,

the procedure propagate constraints always �nds the �rst variable completely known

and either performs the usual propagation if other variables contained in Constr are

also known, or retrieves values with the propagate partially known procedure.

4.1 Interactive Minimal Forward Checking

When the constraint check is a computationally costly operation, the Forward Check-

ing algorithm is outperformed by the Minimal Forward Cheking (MFC) technique [2].

FC checks for consistency every element in the forward connected domains allowing to

detect failure in early stages of computation and to limit the number of backtracking

moves needed during search. If a domain becomes empty during search, FC detects

inconsistency and backtracks. Anyway, in order to avoid backtracking, only one con-

sistent domain value is needed.

The MFC algorithm looks for a consistent value in every future connected domain;

the other elements are left unchecked. If the only consistent value is removed, another

candidate must be found and checked for consistency with respect to all the past con-

procedure IFC(C, D)

begin

for all variables do

begin

select variable(V ar,D),

interactive label(V ar,D),

collect constraints(C,D,V ar,C1),

for each constraint Constr in C1 do

propagate constraints(D,Constr),

end;

end.

procedure interactive label(V ar,D)

begin

if unknown(V ar)

then acquisition var(V ar,DV ar),

label(V ar)

end;

Figure 4: The incremental forward checking algorithm

nected variables. This reduces the number of constraint checks performed on average

during search, but requires complex data-structures managing and, in a CLP frame-

work, the need for a modi�ed backtracking mechanism. As pointed out in [2], this

algorithm is not so good when constraint checks are not computationally expensive.

The Interactive Minimal Forward Checking keeps only one consistent value in the

known part of domains, while the other values are left unextracted. If the consistent

value is removed by constraint propagation, another value must be acquired. This

technique is very useful when the extraction cost is proportional to the number of

extracted elements. In a vision system, when exploiting locality criteria, the cost of

extracting one or all surfaces close (touching) a given one is almost equivalent because

extracting all consistent value is performed as a single operation. Since for the vision

system extracting all the features in an area is nearly as costly as extracting only one

feature, the IFC algorithm is much more promising.

5 EXTENSIONS OF THE CLP(FD) LIBRARY

We have implemented the Interactive Constraint Satisfaction framework on top of

the �nite domain library of the ECLiPSe language [6]. We have chosen to exploit

Constraint Logic Programming [14] on �nite domains (CLP(FD)) since it is a very

e�ective programming paradigm for solving CSP [10, 11]. The CLP(FD) solver has

been extended by means of user de�ned constraints in order to cope with partially

known domains.

In particular, the implementation has concerned:

� an extension of the constraint solver in order to cope with interactive constraints

and partially or completely unknown domains;

� some user-de�ned interactive constraints performing data acquisition (when work-

ing on unknown domain variables) and classical constraint propagation (when

working on known domain variables).

As concerns the extension of the constraint solver, we have implemented a set of low-

level predicates which allow the user to process partially known domain variables,

modify them and write new constraint predicates. In particular, we have extended the

following ECLiPSe predicates

� dvar remove element which removes an element from a variable domain (this

predicate has been implemented also for removing the greatest or the smallest

domain element);

� dvar update which updates a domain variable;

� dom member which selects a domain element.

In addition, a new predicate specify domain has been de�ned in order to per-

form data acquisition and introduce in the domain new values acquired during the

computation.

On the basis of this solver extension, we have implemented some interactive con-

straints performing the propagation explained in the previous sections. As an example,

we sketch here the code of an interactive constraint itouch between two variables rep-

resenting two segments.

itouch(S1,S2) :-

(dvar_domain(S1,_)

-> (dvar_domain(S2,_)

-> touch(S1,S2)

; itouch_propagate(S1,S2))

; (dvar_domain(S2,_)

-> itouch_propagate(S2,S1)

; make_suspension(itouch(S1,S2),4,Susp),

insert_suspension((S1,S2),Susp,specify of dom_pd,dom_pd)

)).

itouch_propagate(S1,S2) :-

(nonvar(S1)

-> dvar_domain(S1,Dom1), dom_to_list(Dom1,L1),

acquisition(L1,L2), specify_domain(S2,L2)

; make_suspension(itouch(S1,S2),4,Susp),

insert_suspension(S1,Susp,any of fd,fd),

insert_suspension(S2,Susp,specify of dom_pd,dom_pd)).

If both variables are known, the non-interactive constraint touch(S1,S2) is called.

Otherwise, if one of the two variables is unknown a data acquisition starts for the

unknown variable on the basis of the known one. If both variables are unknown the

constraint is suspended. Note that in the case of forward checking strategy, this latter

case never happens since constraints are checked with one variable bound to a value.

The extension of the CLP(FD) solver does not a�ect the declarative semantics of

CLP itself, but only its operational behaviour; in fact, the interactive constraints and

the non interactive one hold for the same pairs of values.

6 3D OBJECT RECOGNITION VIA ICSP

In this section, we present the application of ICSP to the problem of 3D object recog-

nition in images. The 3D object recognition is a hard open problem in computer vision

since its solution requires a formal de�nition of di�erent elements: the object model,

the visual features used in the recognition process (i.e. the visual elements extracted

from the images), and, �nally, the inference engine exploited in the recognition process.

An e�cient choice of visual features for describing and recognizing 3D objects (espe-

cially CAD-made objects) consists in extracting from images the set of visible surfaces,

and then computing some geometric and topological relations between them [7].

Using surfaces as features, a model M of a 3D object can be formalized as a pair

(X;R) where X = (X1; : : : ; Xn) is the set of surfaces and R is a set of unary, binary or

n-ary relations between surfaces. Using only unary and binary relations, a 3D object

model can be described by means of a constraint graph where object surfaces are nodes

(variables) and relations between surfaces are arcs. A graph representation of object

models has been used in many di�erent contexts of 2D shapes [18], and extended to

the 3D scene recognition [17, 16].

Unary constraints refer to visual properties of single surfaces, such as colours, tex-

ture, or shape. Binary constraints are geometric relationships between surfaces: the

most commonly used is the adjacency constraint that holds if two surfaces have a com-

mon edge. Graphs exploiting surface adjacency are known as Surface Adjacency Graph

(SAG) [12].

Therefore, solving the 3D object recognition problem as a standard CSP can be

seen as a result of the following process:

� extract from the image all surfaces S0; : : : ; Sm;

� create variable domains D0; : : : ; Dn in the de�ned graph;

� �nd an assignment of surfaces to variables satisfying all unary and binary con-

straints.

In the recognition system, we used the shape propriety is a xyz(Xi) (where xyz is

a speci�c shape: rectangle, trapezium, L shape etc) as unary constraint, the adjacency

constraint touch(Xi,Xj) as interactive, and geometric relations is normal(Xi,Xj),

is parallel(Xi,Xj) as (non interactive) constraints. Note that all these constraints

are independent from rotations, translations and distance between the observer and

the object.

Figure 2.a shows an L-shaped 3D object and its corresponding SAG. Figure 2.b

contains the model written in ECLiPSe. For the sake of simplicity, we refer in this

section to a single view graph, but we are currently testing the object-centered model

described in section 2.1.

The CSP-based approach for object recognition su�ers of a severe limitation in term

of e�ciency when applied of real vision applications: the knowledge acquisition step,

that is the surface extraction, is a very time consuming step working on range images

(i.e., images where each pixel contains the information of the 3D distance from the

point of view).

The time spent for extracting all surfaces may result too heavy in many robotic

or industrial applications: for example Figure 5 represents a 3D scene with several

partially overlapped objects; the problem is to �nd an object that satis�es the de�ned

model (the L-shaped of Figure 2, i.e. the block in the middle-left part of the image).

The �rst frame of Figure 5 shows the original image, the second frame the segmented

image where all surfaces are segmented and the third the extracted information on edges

and corners in order to check adjacency and geometric constraints. These operations

take some minutes on standard workstations.

Figure 5: The block7 image

In this framework the adoption of an interactive version of CSP, as de�ned in previ-

ous sections allowed a strong performance improvement. The ICSP-based recognition

executes the following steps:

� the constraint solver interacts with the low-level image processing system and

calls for an initial unconstrained surface (S1);

� the interacting constraint propagation starts, and whenever a variable domain is

not known, new variable values satisfying constraints are requested.

In particular, instead of using a function get all surfaces() at the beginning of

CSP, the ICSP, during the procedure propagate partially known executes the function

get surface touching(Xi) so that only adjacent surfaces are directly computed. This

allows to improve the speed of the ICSP since variable domains turn to be smaller and,

more important, the visual system focusses only on signi�cant image parts. Thus, the

guided interaction prevents the low-level system of acquiring many useless surfaces.

Several tests are performed on images of a speci�c data-base of range images: we

have created a modi�ed version of the Washington State University database [13] by

assembling several images in order to obtain new images containing many di�erent

possibly overlapped objects. Results are obviously data dependent since the speed

achieved in �nding the �rst object satisfying the model depends on the position of the

object in the image in function of the search direction.

Image ICSP CSP Speedup

BLOCK 1 (320x320) * 136.60 279.66 2.04

BLOCK 2 (320x320) * 129.80 276.07 2.12

BLOCK 3 (320x320) 125.01 256.51 2.05

BLOCK 4 (320x320) 39.93 263.50 6.59

BLOCK 5 (320x320) * 156.50 309.90 1.98

BLOCK 6 (320x320) 34.89 301.43 8.63

BLOCK 7 (400x400) 178.77 442.51 2.47

BLOCK 8 (400x400)* 549.10 518.59 0.94

BLOCK 9 (400x400) 215.85 555.76 2.57

Table 1:Computational results (* no L-shape object in the image)

Results in Table 1 refer to a database of 9 images and describe the time (in seconds)

spent for extracting the �rst L-shaped object: the CSP and the ICSP approaches are

compared. Other results are described in [20].

Queries to the ICSP component have the following structure:

:- icsp(Type, L).

where Type is the model we want to recognize, L is a list of surfaces representing

the object recognized. For example, for recognizing an L-shaped object, we query the

system with:

:- icsp(l-shaped, L).

As a result, when the object is recognized the system returns a list of surface

identi�ers (feature identi�ers in general) composing the object. The surfaces are stored

in a �le containing the area, the list of vertexes, the shape, the list of touching surfaces,

the centroid coordinates and the surface normal.

In general the approach ICSP outperforms the standard CSP approach manly be-

cause feature extraction (the most time consuming operation) is substantially reduced.

In some images (marked with *) the object was not present and in such cases all im-

ages must be explored and all surfaces must be computed in both techniques. When

all surfaces are extracted in the image, the gain using an interactive approach is not

particularly high. If the object is not present, the labeling procedure tries to instan-

tiate the �rst variables to all the possible surfaces, so the low-level system must scan

the whole image. Anyway, surface data are recorded, so a feature is never extracted

twice. Moreover, each variable domain is probably smaller, during computation, than

in the CSP case; in fact it contains only values consistent with interactive constraints.

For this reason, even when the object is not present, we can have a gain in perfor-

mance. In other cases (such as in image BLOCK 8) the ICSP su�ers a little penalty,

due to the higher number of choice points added. On the other hand, when the object

is present, great improvement can be obtained, since extraction stops as soon as one

solution is found. This extraction avoidance, combined with the fact that domains are

kept smaller, deals a speedup of 2 to 8. This performance improvement proves the

e�cacy of an interactive approach of recognition that allows of using and managing all

the actual knowledge required by the process.

The advantage of the approach is twofold: from the visual system viewpoint, on

average, we acquire a smaller number of features since we guide the extraction by

means of constraints. From the constraint solver point of view, we work with smaller

domains thus increasing e�ciency. Note also that this kind of acquisition corresponds

to an a-priori application of consistency techniques since the visual system provides

only consistent values with constraints.

7 CONCLUSION AND FUTURE WORK

We have presented a model for interactive CSP which can be used when data on the

domain is not completely known at the beginning of the computation, but can be

dynamically acquired on demand by a low level sensor system. More important, it is

used in order to guide the search by generating new constraints at each step.

We have implemented the framework by extending the ECLiPSe CLP(FD) library

and applied it to a case study of object recognition and identi�cation in a vision

system. Objects are modeled by means of constraints and constraint propagation is the

general-purpose tool for detecting a solution. Therefore, information can be acquired

on-demand from the low level visual system thus reducing computationally-expensive

low level tasks.

We are currently studying how the Interactive CSP framework can be applied to

other �elds. In particular, it has been successfully applied to planning problems [1]

where it has been used in order to progressively collect information on the real world.

In addition, we are considering to de�ne a general method for solving CSPs based on

the interactive framework.

Future work concerns both the improvement of the Interactive CSP model and its

propagation algorithms and the visual application. As concerns the ICSP model, we are

currently testing other constraint propagation algorithms, like arc-consistency, in order

to determine in which cases it could be applied instead of forward checking in the visual

recognition. In the �eld of object recognition, future work is aimed at extending the

system for integrating more complex visual features and for modeling the visual target

in terms of hierarchical ICSP, for taking into account complex and structured objects.

Moreover, the approach is currently under testing for 3D recognition on range images

with an object centered model that solves the limitation of using di�erent constraint

graph for di�erent views of the same object. Thus, we are currently studying the object

centered model (brie
y presented in section 2.1) that exploits visual constraints and

virtual surfaces in order to recognize an object independently from the observer point

of view. Detailed information on ongoing research can be found at:

http://www-lia.deis.unibo.it/Research/Areas/icsp/icsp.html

Acknowledgements

This work has been partially supported by CNR, Committee 12 on Information Tech-

nology (Project SCI*SIA) and MURST Project on "Intelligent Agents: Interaction and

Knowledge Acquisition".

References

[1] R. Barru� and M. Milano. Interactive constraint satisfaction for information

gathering in planning. In ECAI, 1998.

[2] M.J. Dent and R.E. Mercer. Minimal forward checking. In 6th IEEE International

Conference on Tools with Arti�cial Intelligence, pages 432{438, 1994.

[3] M. Dincbas, P. Van Hentenryck, and H. Simonis. Solving the car sequencing prob-

lems in Constraint Logic Programming. In Proceedings of European Conference

on Arti�cial Intelligence ECAI88, 1988.

[4] M. Dincbas, P.Van Hentenryck, and M.Simonis. Solving large combinatorial prob-

lems in logic programming. Journal of Logic Programming, 8(1-2):75{93, 1990.

[5] B. Draper, A. Hanson, and E. Riseman. Knowledge-directed vision: control,

learning and integration. In Proc. of IEEE, vol. 84, n. 11, pages 1625{1681, 1996.

[6] ECRC. ECLiPSe, User Manual Release 3.5.

[7] R. Haralick and L. Shapiro. Computer and Robot Vision, volume II. Addison

Wesley, 1992.

[8] R.M. Haralick and G.L. Elliott. Increasing tree search e�ciency for constraint

satisfaction problems. Arti�cial Intelligence, 14:263{313, 1980.

[9] P. Henderson and J.H. Morris. A lazy evaluator. In 3rd ACM Symposium on

Principles of Programming Languages, pages 90{103, 1976.

[10] P.Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,

1989.

[11] P.Van Hentenryck, H.Simonis, and M.Dincbas. Constraint satisfaction using con-

straint logic programming. Arti�cial Intelligence, 58:113{159, 1992.

[12] A. Hoover, D.Goldgof, and K. Bowyer. The space envelopement: a representation

for 3d scenes. Computer Vision and Image Undestanding, 69(3):310{329, 1998.

[13] A. Hoover, G. Jean-Baptiste, X. Jiang, P.J. Flynn, H.Bunke, D.B.Goldgof,

K. Bowyer, D.W. Eggerf, A.Fitzgibbon, and R.B. Fisher. An experimental com-

parison of range image segmentation algorithms. IEEE Transactions on PAMI,

18(7):673{689, 1996.

[14] J.Ja�ar and M.J.Maher. Constraint logic programming: a survey. Logic Program-

ming, Special Issue on 10 years of Logic Programming, 1994.

[15] T.H. Kolbe, L. Pl�umer, and A.B. Cremers. Using constraints for the identi�cation

of buildings in aerial images. In Proceedings of the 2nd International Conference

on the Practical Application of Constraint Technology (PACT'96), pages 143{154,

London, 1996.

[16] M.Herman and T.Kanade. Incremental reconstruction of 3d scene from multiple

complex image. Arti�cial Intelligence, 30:289{341, 1986.

[17] M.H.Yang and M.Marefat. Constrained based feature recognition: handling non

uniquitess in feature interaction. In IEEE International Conference on Robotics

and Automations, 1996.

[18] J.A. Murder, A.K.Mackworth, and W.S.Havens. Knowledge structuring and con-

straint satisfaction: the MAPSEE approach. IEEE Trans. on Pattern Analysis

and machine intelligence, 10(6):866{879, 1988.

[19] J.F. Puget. On the satis�ability of symmetrical constrained satisfaction problems.

Technical report, ILOG Headquarters, 1993.

[20] R.Cucchiara, M.Gavanelli, E.Lamma, P.Mello, M.Milano, and M.Piccardi. Inter-

active constraint satisfaction by visual constraints for 3d object recognition. In

LIA-TR98-001 University of Bologna, 1998.

[21] R.Cucchiara, M.Gavanelli, E.Lamma, P.Mello, M.Milano, and M.Piccardi. Con-

straint satisfaction and value acquisition: why we should do it interactively. In

Proceedings of IJCAI'99, 1999. To appear.

[22] T. Shiex, J.C. Regin, C.Gaspin, and G. Verfaillie. Lazy arc consistency. In AAAI,

1996.

[23] D. Vernon. Machine Vision: Automated Visual Inspection and Robot Vision.

Prentice Hall, 1991.

[24] D.L. Waltz. Generating semantic descriptions from drawings of scenes with shad-

ows. Technical Report AI-TR-271, A.I. Lab., M.I.T., Cambridge, Mass., 1972.

