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Abstract

Constraint Logic Programming has been proven to be a suitable tool for

solving combinatorial problems. However, it presents some limitations in dealing

with optimization criteria, since the pruning of the search space on the basis

of the objective function is very weak. On the other hand, Operation Research

lower bounding techniques provide a powerful way of reducing the search space

on the basis of objective function reasoning. They provide e�ective bounds for

the original problem by computing the optimal solution of a relaxed problem. In

this paper, we propose an integration of OR lower bounding techniques in CLP

in order to achieve the bene�ts of both paradigms. We have implemented this

technique in the CLP language CHIP and applied it, as a case study, to a Job

Shop Scheduling application in the �eld of production planning. By integrating

the OR lower bounding techniques in CLP, we are able to achieve promising

results and to optimally solve problems which are one order of magnitude greater

than those solved by a pure CLP approach.

Keywords: Integration of OR Techniques in CLP, Scheduling Problems, Hybrid

solver con�gurations

1 INTRODUCTION

In this paper, we present an approach for combining Constraint Logic Programming

(CLP) and Operations Research (OR) techniques. CLP [17] is a powerful programming

paradigm combining the advantages of logic programming and the e�ciency of con-

straint solving. Many real life applications, such as scheduling, planning, sequencing

and assignment problems, have been e�ectively solved by using CLP techniques (see

[8, 9, 13]).

While current CLP systems provide very e�ective constraint propagation mecha-

nisms, they present some limitations in dealing with objective functions. In particular,

optimization predicates provided by CLP languages impose, each time they �nd a so-

lution, that further solutions will have a cost better than the best one found so far.

This mechanism triggers very little propagation (if any) on variable domains since

usually the objective function is loosely connected with decision variables. For ex-

ample, in scheduling problems, the objective function which should be minimized is

the makespan, i.e., the completion of the whole schedule. This objective function is

equal to the ending time of the last job. Thus, the decision variables domain reduction

loosely a�ects the bounds of the objective function and vice versa.



OR techniques provide a powerful way of coping with optimization predicates. In

particular, Branch & Bound techniques [25] allow to prune the search space on the

basis of the lower bound calculation. A lower bound is an optimistic value of a solution

of the original problem obtained by optimally solving a relaxed one, i.e., a problem

where some constraints have been relaxed. The better is the lower bound, the more

accurate is the valuation of the optimal solution we can �nd in a given subtree.

In this paper, we argue that by combining Operations Research techniques in Con-

straint Logic Programming makes it possible to e�ciently solve large size and hard

problems. We obtain a performance improvement of the resulting solver and we are

able to optimally solve problems which are one order of magnitude greater than those

solved by a pure CLP approach.

For this reason, the integration of CLP and OR techniques is an emerging research

area (see for example [3, 4, 7, 11, 12, 14, 19, 22, 23, 24]) since it gets the advantages

from both �elds. From OR, we get a better, e�ective way of exploring the search space,

while retaining the CLP declarative semantics easing the problem modeling, and its

e�ective constraint propagation. Moreover, we can further improve the e�ectiveness

of lower bound coming from OR, by combining propagation techniques and domain

reasoning with results coming from relaxations of the original problem. In fact, we

de�ne a propagation algorithm which prunes variable domains on the basis of the lower

bound calculation at each node of the search tree. The lower bound based propagation

interacts with other problem global constraints through shared variables.

We have applied these techniques to a Job Shop Scheduling application for O�cine

Rizzoli, a company producing orthopedic prothesis and girdles for a well-known italian

group of orthopedics hospital departments. The system, written in CHIP [10] sched-

ules about 150 jobs each week with an average of 20 tasks each over 20 productive

resources, considering alternative processing units and trying to minimize the schedule

makespan. Another optimization parameter we are currently taking into account is the

resource use balance. Resource balance should be obtained in order to avoid resorting

to unnecessary overtime and to have some available work power for e�ectively dealing

with emergencies.

Using only Constraint Logic Programming techniques we could optimally solve

problems with 10-20 jobs with an average of 20 tasks each. In addition, CLP techniques

su�er from heavy dependency of the solver from the data con�guration. For some very

loosely constrained problem instances, we could not cope with more than 5-7 jobs of

20 tasks each. Thanks to the integration proposed, we optimally solve real problems

of 150 jobs and the code is less dependent on data con�guration.

The paper is organized as follows: in section 2 we recall some concepts on CLP

and OR techniques. In section 3, we propose the integration of the two techniques as

a general problem solving methodology. Section 4 presents the case study in the �eld

of Job Shop Scheduling. The speci�c problem is described, along with variable and

constraint formalization. In addition, a lower bound description and its integration

in a CLP framework is presented. Section 5 is devoted to implementation details. In

section 6 we present some computational results. Section 7 describes some related

approaches. Conclusion and further work follow.



2 PRELIMINARIES

2.1 Constraint Logic Programming

Constraint Logic Programming (CLP) [17, 16] is a class of programming languages

combining the advantages of Logic Programming (LP) [20, 18] and the e�ciency of

constraint solving. CLP techniques, thanks to the active use of constraints, allow to

a-priori prune the search space by removing combination of assignments which cannot

appear in any consistent solution. The main idea behind this approach is to prevent

failures instead of recovering from failures that have already happened, by means of

expensive backtracking.

In this paper, we focus on Constraint Logic Programming on Finite Domains

CLP(FD) which has been successfully applied to several combinatorial optimization

problems, see [8, 9, 13].

In CLP(FD) languages, variables range over �nite domains of integers. The vari-

able's domains represent possible values that variables can assume during the compu-

tation. For example, X :: [1::10] states that variable X can assume one of the integer

values from 1 to 10, Y :: [3; 5; 9] states that variable Y is either 3 or 5 or 9. Variables

are linked by constraints that can be either mathematical constraints, such as X > Y ,

X < Y , X = Y , X � Y ,X � Y ,X 6= Y , or symbolic constraints. Symbolic constraints

are more powerful constraints with complex propagation mechanisms. A typical sym-

bolic constraint is atmost(Nb,[X
1
, ...Xn],Val), available in most CLP(FD) solvers

like CHIP [10]. Declaratively, the constraint atmost(Nb,[X
1
, ...Xn],Val) holds if

and only if at most Nb elements Xi are equal to Val. In the constraint, all the Xi are

domain variables.

In many cases, an optimization criterion must be satis�ed, i.e., we have to �nd

the best of the feasible solutions. Therefore, many CLP languages provide Branch &

Bound procedures for minimization or maximization.

The structure of a general CLP optimization program written in CHIP is the fol-

lowing:

optimize(Variables,C):-

create_domains(Variables),

create_cost(C),

globalconstraints(Variables),

min_max(labeling(Variables),C).

labeling([]).

labeling([Var|Rest]):-

indomain(Var),

labeling(Rest).

The predicate create domains(Variables) creates variable domains, create cost(C)

de�nes the link between the cost variable C and decision variables Variables, the

predicate globalconstraints(Variables) imposes symbolic and mathematical con-

straints on variables, while min max searches for an optimal solution of the problem.

The labeling procedure simply selects a variable and instantiates it to a value in its

domain. More advanced labeling procedures can in general be de�ned.



The min max optimization predicate provided by CHIP searches for a solution of

a goal predicate that minimises a cost expression C. Every time a solution is found

(with cost C�) the search continues with the new constraint C < C�. C is a domain

variable which is linked to problem domain variables. By reasoning on domains, CHIP

can recognize if, at any level of the search tree, a good solution can be found by

means of further in-depth exploration. So, if the lower bound of the domain of C has

a greater value than the best solution found so far, min max backtracks, searching for

alternative partial solutions. The problem is that the lower bound obtained just by

means of the original problem variable bounds is not usually a good lower bound for

the problem itself. Therefore, pure Constraint Programming techniques are usually

able to prune only the few levels of the search tree, when most decision variables have

been instantiated.

On the other hand, by using a lower bound calculated exploiting a good relaxation

of the original problem as in [11, 5, 6], it is possible to prune the search space more

e�ectively. The global constraints of CHIP o�er good lower bounds over generic prob-

lems categories, but they cannot be as good as special tailored relaxations exploiting

extra knowledge of the problem domain. More precisely, the global constraints are

based on generic relaxations over common problem categories. For instance, CHIP

o�ers constraints like the cumulative that helps propagation for resource constrained

problems like the job-shop. To mantain genericity, however, cumulative can not be

specially tailored for every kind of job-shop problem we face. This is the main reason

why, using both global constraints together with other more specialized relaxations, we

can further enhance the performance of the solver.

2.2 Operations Research Lower Bounding Techniques

In this section, we describe the basic ideas behind Operations Research lower bounding

techniques which have been widely used for solving hard combinatorial optimization

problems. For a survey, refer to [21].

Combinatorial optimization problems in general have the form minff(x) : x 2 Xg,

where X is a �nite feasible solution set, and f(x) is a real-valued objective function

de�ned over X. Such problems cannot be solved by enumeration in a reasonable

computing time since X may have a huge cardinality.

One of the most successful approaches for the solution of general integer linear

programs relies on Branch & Bound techniques that are based on the optimal solution

of a relaxation of the original problem.

A relaxation of the problem is obtained by removing a set of constraints of the

original problem in such a way that the resulting problem (the relaxed one) is more

easily solvable.

It is easy to see that the optimal solution value of the relaxed problem provides an

optimistic value (lower bound) of the optimal solution value of the original one. Indeed,

the relaxed problem has a wider feasible solution set and its objective function is not

greater than the original one for all the feasible solutions to the original problem.

In section 3, we will explain how to exploit the information provided by the relaxed

problem solution (the lower bound) in a Constraint Logic Programming environment.



3 COMBINATION OF CLP AND OR

The lower bound information, inserted in a CLP scheme, serves mainly for three ob-

jectives:

1. pruning the search space by reducing the objective function variable bounds more

e�ectively than pure CLP bounds based on domain reasoning;

2. pruning the search space by removing from variable domains those values which

cannot improve the best solution found so far;

3. de�ning general, domain-independent heuristics for the selection of the value to

assign on the basis of lower bound calculation, thus implementing a sort of Best

Bound First search strategy.

The pruning of the search is thus due to both a direct domain reduction on the variable

representing the cost of the solution (i.e., the parameter that should be minimized) and

a decision variable domain reduction (points 1 and 2 in the above list). Let us see how

these propagations work. The �rst propagation (point 1 in the above list) is simply

an improvement of the classical CLP branch and bound technique. In CLP, the cost

variable C is a domain variable ranging on [Cmin::Cmax] and is a general function of

decision variables, i.e., C = f(X
1
; : : : ; Xn). Thus, the domain reduction of C can be

re
ected on decision variable domains and vice versa. Cmin represents the problem

lower bound. In CLP, however, the bounds of the domain of C are computed starting

from domain variables. Suppose, for example, that C represents the makespan of a

schedule. Value Cmin is set to the minimal ending time of each task. This usually

does not lead to a good propagation, especially for variables related to the tasks that

have to be executed at the beginning of the schedule. We argue that, by quickly

solving a relaxed problem during the labeling procedure, we can obtain tighter lower

bound information and thus, we have the possibility of achieving a better pruning

on decision variable domains. If, at a certain node of the search tree, a lower bound

LB is computed, it can be used for tighten the value of Cmin. This is the OR classical

propagation based on lower bound calculation. Obviously, if the computed lower bound

is greater than Cmax, the search process can be stopped and backtracking triggered.

The second propagation (point 2 in the above list), instead, is much more powerful

since it is a direct propagation on decision variables. Consider a variable Xi whose

domain contains values vi1 ; : : : ; vin. Intuitively, for each domain value vij , we can

compute a lower bound of a problem generated if vij is assigned to Xi, i.e., if vij is part

of a solution. If the resulting lower bound is greater than Cmax, obviously the value vij
cannot be part of a solution whose cost is better than the best one found so far. More

formally, if LBjXi=vij
> Cmax then vij is removed from the domain of Xi. Obviously,

the lower bound calculation should be computed e�ciently.

Using OR techniques over domain variables attached to CLP constraints allows to

implement OR algorithms that can experience further gains in precision of the lower

bound because of the concurrent exploitation of constraints declaratively stated on

the variables during both search and domain de�nitions. Executing the search using

the original variables of the main problem allows to take into account, without any

explicit coding, the main global constraints on the problem (for example in the �eld



of scheduling applications, we have capacity constraints, precedence between tasks

belonging to the same job).

Concerning point 3, evaluating lower bounds for each variable at each choice point

serves as a general, domain-independent heuristics for the value selection strategy, thus

implementing a sort of Best Bound First BBF search strategy (or Frontier Search). In

fact, after having chosen the next variable to instantiate Xi, we can order its domain

values vi1 ; : : : ; vin on the basis of the lower bound LBjXi=vij
. In this way, we can explore

�rst more promising branches, i.e., branches which can lead to a better solution. The

strategy implemented cannot be viewed as a real OR Best Bound First Strategy since

we have a depth-�rst component, while the BBF strategy inherently embeds a bread-

�rst component. However, even with a depth �rst strategy, the lower bound on domain

values computed at each node provides important information on the best branch to

explore.

In the next section, we apply this general method to a Job Shop Scheduling problem.

4 THE SCHEDULING APPLICATION

4.1 The problem domain

We have applied our algorithm to a Job Shop Scheduling Problem in the �eld of

production planning for an orthopedic company. The system schedules about 150 jobs

each week with an average of 20 tasks each over 20 productive resources, considering

alternative processing units and trying to minimize the schedule makespan.

Formally, we have a set of jobs J
1
; : : : ; Jn, each constituted by a set of tasks that

have to be processed sequentially in order to complete the job. Each job Jk has a

minimum starting time and a due date (i.e. maximum allowed ending time).

Each task has to be scheduled in time and assigned to a disjunctive resource with

�nite capacity. One resource may work on one task at a time, or may be waiting between

the processing of two tasks. The resources are available over the whole scheduling span,

and the processing time of one task is �xed and does not depend on the particular

resource we choose for processing it. Once started, the processing of a task cannot

be interrupted and must be completed within the same day. The tasks belonging to

a job have to be processed in a strict order, with no alternative processing sequences.

Of course, we have to schedule the tasks in time in order to satisfy the due date for

every job. One interesting additional constraint on the problem is a time limit on the

maximum working time for each resource in a single day.

Our goal is to �nd a feasible solution for the problem that minimizes the makespan

of the schedule. While scheduling tasks deciding start times with a granularity of 5 to

15 minutes, we only consider days in our cost expression. In fact, for our customer, it

is equivalent if a job gets done in the early morning or late in the afternoon. What

is important is the delivery day. This point is very important, since it allows to e�-

ciently compute the lower bound of each value (delivery day) in the domain of decision

variables.



4.2 Variables and Constraints

In order to de�ne in a clean, readable way the constraints on the problem, we have

decided to express the starting time of tasks with a redundant set of domain variables.

For every task, in fact, we consider the variables T ime, Day and Start. T ime contains

the time interval in the day the task starts, Day contains information on the day the

task starts being processed. Finally, Start is de�ned by means of a constraint stated

using T ime and Day. More precisely, we have imposed Start# = Day � 100 + T ime.

In fact, in our problem a day is divided into 100 time intervals.

We can express in a very simple way the precedence constraints on the single tasks,

simply stating Starti +Durationi# < Startj if Taski has to precede Taskj.

Other constraints on the schedule can be expressed by using global constraints

available in CHIP [2]. To express maximum resource capacity, for each resource we

state a cumulative constraint on the tasks that must be processed by that resource.

These constraints impose a limit on the maximum number of tasks, requiring the same

resource category, that can be processed at the same time. We also use a cumulative

using Day and Duration of the tasks in order to express the constraints on the maxi-

mum work per day and resource allowed for a feasible schedule.

In order to further enhance propagation, we state on the variables a redundant

precedence constraints, that enforces the propagation, combining knowledge deriving

from both resource assignment and precedence between tasks belonging to the same

job. Finally, a diffn constraint is used in order to constrain the assignment of each

task to a single resource instance.

4.3 Problem objective and lower bound

Job Shop Scheduling applications usually tend to optimize schedules using themakespan

criterion. The makespan is the temporal extension of the entire set of jobs involved in

the scheduling. So, given n jobs j
1
:::jn, said EndJk the ending time of job Jk, minimiz-

ing the makespan means �nding a sequence of tasks that minimizes maxk=1::n(EndJk).

A common OR relaxation for this problem is the single-machine lower bound, also

called the shifted bottleneck procedure [1]. This lower bound is obtained as follows: in

a Job Shop problem each task is bound to a single resource class, say Ri i = 1::m. For

each resource, we consider the tasks using only that resource, we solve the scheduling

subproblem, with the additional relaxation of considering the tasks interruptible as

many times as we need, obtaining a value of the makespan that can be calculated

in polynomial time with the number of tasks. Note that, begin the cost function

computed in terms of days, the information on the makespan is also computed in terms

of days needed to process all tasks sharing the same resource. If TRi i = 1::m is the

makespan bound calculated for each resource in the original problem, we have a bound

for the makespan of the original problem by calculatingmaxi=1::m(TRi). Note that the

relaxation introduced by the single machine bound to split into several parts the task

processing has been chosen in order to keep the lower bound algorithm simple, and

to avoid the need to implement a branch and bound techniques to calculate the lower

bound itself. While this choice leads to an undeniable computation gain, it achieves a

worse lower bound value, especially for highly constrained problems.

The lower bound calculation has been implemented in the CLP solver itself by



solving the relaxed problem obtained by removing both the non-preemptivity and the

precedence constraints between tasks that share the same resource and thus solving a

preemptive scheduling problem considering only tasks that use a single resource. The

only constraints that are relaxed are the one involved in the subproblem to be solved.

This allows to take into account all the problem constraints during the lower bound

calculation since the min max predicate used to calculate the lower bound still works

considering constraints stated both the problem decision variables and on the new

subproblem to be solved. On the contrary, the single machine lower bound computation

in the original OR implementation does not take into account the global constraints

stated on the original problem. That is, when the lower bound is calculated at some

point of the search process, the OR lower bound algorithm does not consider, for

example, precedence constraints stated between couples of tasks of the same job that

do not share the same resource. Neither does it consider additional constraints on the

speci�c domain, such as maximum working time per period limitations (day, week...)

or other restrictions required by the single problem to be solved.

In order to achieve good performance with this lower bound calculation technique

we need a good value selection heuristics for the relaxed subproblem solution. In this

case, the standard labeling strategy of CHIP that is selecting the minimum value in

the variable domain, is a good heuristics for the makespan optimization. Otherwise the

calculation of the lower bound could be too heavy, computationally speaking, even if

selecting only tasks over single resource categories produces, under realistic conditions,

a problem that is smaller than the original one by an order of magnitude.

5 IMPLEMENTATION

In this section, we explain how to use the lower bound information in the search

strategy and provide some implementation details. Translated into CLP code, the

lower bound technique proposed in section 4.3 is simply a matter of extracting, �ltered

on a single resource, a subset of the original problem's status list, then executing a

branch and bound (min max predicate) on the new problem obtained. Of course, using

the original problem's status list for solving relaxations of the problem itself leads to

wrong instantiations of the variables, from the main problem point of view. Using

the undoing capabilities of the backtracking mechanism of CLP languages, keeping the

code clean is just a matter of forcing a backtracking after having calculated the bound.

Translated into CHIP code, this means

% +StatusList is the list of the tasks exploiting the same resource

% -LowerH is the bound for that resource

calc_SMLowerBound(StatusList,LowerH):-

schedule(MaxDay,_), % gets the temporal extension of the schedule

LowerB :: 0..MaxDay, % the bound is a value between 0 and MaxDay

setval(last_lb_ok,0),

make_lbcostlist(StatusList,CostList), % builds a cost list for the bound

min_max(labeling(StatusList),CostList), % branch and bound

maximum(LowerB,CostList),

setval(last_lb,LowerB), % saves the LB value

setval(last_lb_ok,1), % flag of forced backtracking



fail. % forces a backtracking

calc_SMLowerBound(_,LowerH):-

getval(last_lb_ok,LastLbOk),

LastLbOk > 0,

getval(last_lb,LowerH).

The predicate calc SMLowerBound returns in LowerH the value of the bound (number

of days) obtained for tasks using a single machine. The global variable last lb saves

the value of the bound when the backtracking is forced by the fail predicate. The other,

last lb ok, is needed to distinguish between a forced backtracking (if last lb ok has

value 1) or a backtracking induced by some failure during the search process. This

additional information, beside ensuring the correct calculation of the bound, could be

exploited for another important part of the scheduling process, that is explanation of

failures. In fact, if a bound calculation fails on a particular resource in the highest

levels of the search tree, it is a clear indication of the fact that such resource is one of

the main responsible for a failure of the entire search process.

In order to enhance the search process to exploit a lower bound function, we have

to modify the labeling procedure as follows

labeling([],CostList):-

sum_cost(CostList,Value),

newUB(Value).

labeling([Task|Rest],CostList):-

indomain(Task),

calc_lowerBound([Task|Rest],LowerBound),

satisfyBound(LowerBound),

labeling(Rest).

The predicate calc lowerBound/2 partitions the task status list (i.e., [Task|Rest])

separating tasks that must be processed by di�erent resources. Then, calc SMLowerBound/2

schedules every set of tasks using the same resource, and calc lowerBound/2 returns

in LowerBound the maximum value obtained. This is a lower bound for the original

problem.

The predicate satisfyBound/1 checks whether current upper bound is strictly

greater than the parameter passed, i.e., the lower bound calculated by calc lowerBound/2.

The predicate newUB/1, called at the end of the labeling process, that is when a feasible

solution has just been found, sets the new upper bound to the value of the cost of the

solution itself. This value, as enforced by satisfyBound/1, must be strictly smaller

than the last upper bound. The de�nition of satisfyBound/1 is straightforward

satisfyBound(LowerBound):-

upperbound(UpperBound), % gets the current upper bound

LowerBound < UpperBound, !.

satisfyBound(_):-

write('pruning...'),nl,fail.



satisfyBound/1 is checked after every assignment at a choice point. This ensures that

the current partial solution could lead to a better solution than the best one found so

far in the search process. The predicate newUB/1 sets the new upper bound for the

search process by adding to the database the new term upperbound(UBValue), after

having retracted older versions, i.e., older values of the upper bound.

newUB(UBValue):-

retractall(upperbound(LastUB)),

assert(upperbound(UBValue)).

newUB/1 is called at the end of the labeling phase, when all the variables have been

instantiated, that is when a feasible solution has been found. The need to call re-

tract and assert to save current upper bound value has to be found in the particular

implementation of the min max predicate of CHIP. When the search is restarted after

a solution has been found, all the changes to global variables' values get undone, so

global variables are not the correct way to save information about the search process

progress.

The bounding strategy implemented using the improved lower bound helps speeding

up the search process. In particular, we achieve the ability to prove optimality for bigger

problems. However, there is still much room for improvement in the search process,

exploiting other techniques derived from Operations Research.

We have been working on the selection of the value to assign at each choice point,

exploiting the information deriving from the calculation of the lower bound. At each

choice point, for every value in the selected variable domain directly involved in the

cost expression (that is, in our problem, the day the task has to be executed), we

calculate the lower bound corresponding to that assignment, obtaining a list of terms

bound(Value, Bound). Sorting this list on ascending value of the Bound parameter,

we get a way to select, with respect to the cost value, the most promising Value to

choose in the search process.

Implementing this new search strategy in the program, is just a matter of substi-

tuting, in the labeling clause the call to indomain/1 predicate with the following

code:

dom(Task,ChoiceList), % extracts domain values for Task

make_lblist(Task, [Task|Rest], CostList, ChoiceList, LBList),

% creates LBList, list of terms bound(Value, Bound)

sort(LBList,LBList1,2), % sorts LBList on ascending Bound value

member(bound(Choice,LBValue),LBList1), % choice point on LBList1

Task = Choice.

The predicate make lblist/2 builds LBList, a list of terms bound(Value, Bound)

solving for every value in ChoiceList the lower bound information obtained by solving

the relaxed subproblem shown in section 4.3. In order to complete its task it has to

exploit the information coming from the status list composed by the variables still to

be instantiated [Task|Rest] and, of course, the cost list CostList of the optimization

problem.

What we achieve is a sort of Best Bound First (or Frontier) search process with a

depth �rst component since we �rst select the variable (depth �rst) and then we choose



the value on the basis of the LB computation. This leads to much better cost values

of the �rst solution found, obtaining better upper bound and higher e�ectiveness in

pruning the search tree at the beginning of the search process. What is more, while

integrating this new search method into CLP, we have seen the way to actively use

the lower bound information in pruning the search space doing domain reduction, as

explained in section 3 (point 2). Acting in the labeling predicate, reduction of the

Task variable is performed by excluding from the selected variable domain (prior to

instantiation) those values in LBList for which we have

bound(Value, LB) with LB � UpperBound

This technique remedies one of the worst problem of Constraint Programming opti-

mization systems when coping with optimization problems, especially when dealing

with loosely constrained problems like Job Shop scheduling, where a very large num-

ber of feasible solutions exist, often with little variation with respect to the cost value.

This sort of propagation has been proven to be useful not only when applied locally

to the variable involved in a choice point of the search process, but even as a way

of reducing the domains of the whole set of uninstantiated variables before actually

starting the search. In fact, having obtained a good upper bound Cmax exploiting a

good heuristics on the problem, we e�ectively prune the search space before actually

starting the search phase, using the reduction algorithm based on lower bound.

6 RESULTS

By integrating OR techniques in CLP we have achieved some major bene�ts over pure

CLP: more data independence of the search process, ability to solve bigger and harder

problems, greater ability to solve in a complete way loosely constrained problems with

(relative) high e�ciency.

In Table 1, we report some results of the code implemented in CHIP [10] for solving

instances of the scheduling problem described in section 4. The results have been

obtained on a Workstation SUN Sparc 10.

In Table 1 we consider three cases:

� the pure CLP code using the CHIP min max optimization predicate, (column

CLP);

� the CLP code exploiting the single machine lower bound described in section

4.3 used in order to prune the cost variable domain only, i.e., the propagation

described in point 1 in section 3, (column CLP+LB);

� the CLP code exploiting all pruning described in points 1 and 2 of section 3 and

the lower bound based heuristic, (column CLP+LB+BBF).

For each technique, we report the computational time in seconds spent in order to

�nd the �rst solution (columns First) and the time spent in order to �nd the optimal

solution (columns Opt). For some problems, the optimal solution has not been found

after 60 minutes.



N. Tasks CLP CLP+LB CLP+LB+BBF

First Opt First Opt First Opt

75 3 15 4 8 13 20

150 7 - 9 75 18 80

300 10 - 15 - 30 70

1500 30 - 50 - 120 450

2250 45 - 120 - 180 900

Table 1: Computational Results

As we can note, while the pure CLP approach outperforms both approaches which

use information provided by the lower bounds in �nding the �rst solution, it fails in

obtaining the optimal solution in reasonable time. This can be explained as follows:

CLP-OR approaches exploiting the lower bound spend more time (due to the overhead

introduced by the lower bound propagation) in order to �nd the �rst solution, which is

usually a good one, while the pure CLP code �nds quickly the �rst (generally worse)

solution. The proof of optimality is obviously more e�cient if we �nd a good �rst

solution and if information on the lower bound is exploited.

Note that by using the integration proposed, we can optimally solve problems which

are one order of magnitude greater than those solved by a pure CLP approach.

For some simple data con�gurations, however, pure CLP outperforms our method

based on branch and bound and obtains the proof of optimality even for large instances.

In fact, for some instances of 200 tasks we have obtained the proof of optimality after 12

seconds. These results however are not robust, since by changing one data con�guration

parameter, performances decreases signi�cantly. With the enhanced lower bound based

approach, we obtain an increased robustness of the algorithm which does not depend

on parameter changing.

7 RELATED WORK

The study of hybrid algorithms for solving combinatorial optimisation problems is an

emerging research area. Hybrid algorithms are based on the integration of di�erent

approaches, such as constraint programming, linear programming, branch and bound

techniques and local search. The strength of such algorithms in solving optimisation

problems arises from the fact that di�erent techniques are suited to solving di�erent

aspects of the problem.

A recent ESPRIT Project, CHIC-2 [7], started in 1996, is aimed at developing

hybrid algorithms for large scale optimization problems (LSCO), to provide a method-

ology for e�cient exploitation of these algorithms, and to build a platform to support

the creation of applications to solve LSCO problems. It will incorporate several solu-

tion methods and will be designed to be extensible. This is because, as new solution

algorithms are discovered they will have to be incorporated.

The integration of existing techniques in hybrid algorithms starts from a comparison

of di�erent methodologies on the same problem. A number of works compare the

performances of CP-based solvers toward OR-based solvers (in particular, integer linear

programming techniques) when applied to particular problems, see [14, 15, 19, 22, 24].

As concerns speci�c hybrid solutions to particular problems, we concentrate on

those integrating Operations Research lower bounding techniques in Constraint Pro-

gramming. The resulting algorithms can have di�erent level of coupling among di�erent



techniques. In particular, in [12] a loose integration of CP and OR techniques is per-

formed for solving the 
eet assignment problem. In this case, the integration takes

the form of one technique that feeds its result to a second one. In fact, a Constraint

Programming (CP) solver provides a good solution used as input to the Mathematical

Programming (MP) system to \warm-start" the Simplex algorithm. In our approach,

the CP solver and the OR branch and bound technique are more tightly coupled and

intertwine their execution for �nding an optimal solution.

A tighter integration is performed in [23] where the authors de�ne an integration of

Mixed Integer Programming (MIP) and Constraint Logic Programming (CLP). A CLP

solver performs local propagation on domain variables, while a MIP solver performs a

global propagation based on the optimal solution of the relaxed problem. This solution

assigns, in general, non integer values to variables. A non integer variable vi whose value

is svi is selected and the problem is splitted in two subproblems containing respectively

the constraints vi � dsvie and vi < bsvic. This approach has some similarities with

ours since we both use a lower bounding procedure for achieving additional pruning.

However, they use the relaxed problem solution in order to de�ne an e�ective branching

rule, but they do not remove from variable domains any feasible value for the original

problem. The constraint propagation here proposed possibly removes feasible values

which cannot lead to any improvement of the best solution found so far.

In [3] an integration of a �nite domain constraint solver and a simplex-based solver

on real numbers is presented. The two solvers cooperate through variable sharing thus

achieving an e�ective value propagation. A similar propagation on the basis of the

lower bound is presented in [5] where the branch and bound classical algorithm is

improved by means of a powerful propagation on decision variables subject to the so

called task interval constraints.

In [4], a heuristic method for the Crew Rostering Problem (CRP) is described. In

order to �nd a good solution, the algorithm exploits the information given by the lower

bounding procedure, which provides an optimistic evaluation of the number of weeks

W needed to �nd a solution. If a feasible W weeks long solution is found, it is an

optimal one. An additional constraint on the number of weeks to be used is imposed,

thus transforming an optimization problem into a more di�cult constraint satisfaction

problem whose solution, if it exists, is usually a very good one. While generating the

solution, every time a roster is completed, the evaluation of the number of weeks needed

is updated by recalculating the lower bound.

In [11] and [6] an even closer integration of Constraint Programming and Lower

bounding techniques is performed and applied to the Travelling Salesman Problem.

The lower bound calculation is used in order to prune the objective function domain

variable, and directly the decision variables domains as we perform in this paper.

The di�erence with the present work is that in [11] the propagation is inserted in

an optimization oriented constraint, while in this paper it is implemented on top of

the constraint solver. In addition, while in [11] a speci�c OR algorithm has been

implemented and encapsulated in the constraint, in this paper, we have used a CLP

min max optimization predicate in order to compute the lower bound. In [6], while

exploiting the same propagation techniques as we do in this paper, they start over a

new tree search each time a solution is found. This may lead to a redundant exploration,

but ensures that the tree is \ well built" for the problem to be solved.



8 CONCLUSION

In this paper, we have proposed an integration of OR lower bounding techniques in

Constraint Logic Programming. We have used the lower bound information in order

to achieve a more e�ective pruning of the search space and in order to de�ne general

domain-independent heuristics on value ordering. The advantages of CLP, such as

rapid prototyping, clear and easily modi�able code and 
exibility in dealing with new

constraints, are maintained in the integrated approach.

We have implemented a working prototype by using the Constraint Logic Pro-

gramming language CHIP which provides very e�ective global constraints performing

powerful propagations.

The results obtained are very encouraging since the integration allows to outperform

pure CLP approaches in �nding optimal solutions and is able to solve problems which

are one order of magnitude greater than those solved by a pure CLP approach.

We are currently trying to further improve propagation from the objective func-

tion toward decision variables by applying it, at each choice point during the labeling

phase, on the whole set of uninstantiated variables. This, however, is a computation-

ally expensive task, and we need to further investigate on balancing the amount of

propagation with the search speed and memory requirements. We could reduce the

cardinality of the set of the variables involved in propagation, by identifying a subset

of variables that could lead to a more e�ective reduction of the search space reasoning

on the problem domain characteristics. An alternative approach could be reducing

domains not at every choice point.

Further works are aimed to investigating the application of other objective func-

tions and lower bounds to Job Shop Scheduling problems. In fact, we believe that

the makespan criterion, under certain real world conditions, does not represent as an

e�ective optimization condition. We are currently working on the application of our

search scheme to a problem with a cost function that allows us to balance the use of

resources throughout the whole schedule, minimizing the global use of resources over a

certain limit, thus minimizing the need for overtime and trying to keep always a certain

spare workpower for optimally dealing with emergencies.
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