Risk analysis and Deployment Security Issues in a Multi-agent System

Ambra Molesini & Marco Prandini
Elena Nardini & Enrico Denti
{ambra.molesini, marco.prandini,
elena.nardini, enrico.denti}@unibo.it

Alma Mater Studiorum—Università di Bologna

ICAART 2010, Valencia, Spain, 22nd January 2010
1. Case Study

2. Risk Analysis

3. Security Deployment Issues

4. Conclusions and Future Works
The objective of this paper

- Our work is aimed at performing a security analysis of a selected case study – an access control system [Molesini et al., 2009] – for

- identifying threats coming both from
 - the system domain
 - its MAS-based implementation

- assessing risks

- discussing deployment strategies that could interfere with the achievement of the application goal

In order to do this we

- present our case study
- present the risk analysis phase
- discuss about security deployment issues
The objective of this paper

Our work is aimed at performing a security analysis of a selected case study – an access control system [Molesini et al., 2009] – for

- identifying threats coming both from
 - the system domain
 - its MAS-based implementation

In order to do this we

- present our case study
- present the risk analysis phase
- discuss about security deployment issues
The objective of this paper

- Our work is aimed at performing a security analysis of a selected case study – an access control system [Molesini et al., 2009] – for
 - identifying threats coming both from
 - the system domain
 - its MAS-based implementation
 - assessing risks
The objective of this paper

- Our work is aimed at performing a security analysis of a selected case study – an access control system [Molesini et al., 2009] – for
 - identifying threats coming both from
 - the system domain
 - its MAS-based implementation
 - assessing risks
 - discussing deployment strategies that could interfere with the achievement of the application goal
The objective of this paper

- Our work is aimed at performing a security analysis of a selected case study – an access control system [Molesini et al., 2009] – for
 - identifying threats coming both from
 - the system domain
 - its MAS-based implementation
 - assessing risks
 - discussing deployment strategies that could interfere with the achievement of the application goal
- In order to do this we
The objective of this paper

- Our work is aimed at performing a security analysis of a selected case study – an access control system [Molesini et al., 2009] – for
 - identifying threats coming both from
 - the system domain
 - its MAS-based implementation
 - assessing risks
 - discussing deployment strategies that could interfere with the achievement of the application goal

- In order to do this we
 - present our case study
The objective of this paper

- Our work is aimed at performing a security analysis of a selected case study – an access control system [Molesini et al., 2009] – for
 - identifying threats coming both from
 - the system domain
 - its MAS-based implementation
 - assessing risks
 - discussing deployment strategies that could interfere with the achievement of the application goal

- In order to do this we
 - present our case study
 - present the risk analysis phase
The objective of this paper

- Our work is aimed at performing a security analysis of a selected case study – an access control system [Molesini et al., 2009] – for
 - identifying threats coming both from
 - the system domain
 - its MAS-based implementation
 - assessing risks
 - discussing deployment strategies that could interfere with the achievement of the application goal
- In order to do this we
 - present our case study
 - present the risk analysis phase
 - discuss about security deployment issues
Background

- MASs should be conceived also as providers of security functionalities.
Background

- MASs should be conceived also as providers of security functionalities
- The flexibility of the agent paradigm proves very valuable in
Background

- MASs should be conceived also as providers of security functionalities
- The flexibility of the agent paradigm proves very valuable in
 - modelling the different aspects of security schemes
Background

- MASs should be conceived also as providers of security functionalities.
- The flexibility of the agent paradigm proves very valuable in:
 - modelling the different aspects of security schemes
 - capturing the concepts needed for achieving a robust design at the most appropriate abstraction levels

However, a MAS needs a complex underlying infrastructure, whose intrinsic security is fundamental for the correct implementation of the policy to be enforced.

Various solutions exist for the design of MAS-supporting platforms and for exploiting a MAS as a security provider ([Yamazaki et al., 2004, Bordini et al., 2006, JADE, 2005])... but the field of their security assessment is largely unexplored.
Background

- MASs should be conceived also as providers of security functionalities
- The flexibility of the agent paradigm proves very valuable in
 - modelling the different aspects of security schemes
 - capturing the concepts needed for achieving a robust design at the most appropriate abstraction levels
- However, a MAS needs a complex underlying infrastructure, whose intrinsic security is fundamental for the correct
Background

- MASs should be conceived also as providers of security functionalities.
- The flexibility of the agent paradigm proves very valuable in:
 - modelling the different aspects of security schemes
 - capturing the concepts needed for achieving a robust design at the most appropriate abstraction levels
- However, a MAS needs a complex underlying infrastructure, whose intrinsic security is fundamental for the correct
 - behaviour of agents

Various solutions exist for the design of MAS-supporting platforms and for exploiting a MAS as a security provider [Yamazaki et al., 2004, Bordini et al., 2006, JADE, 2005]... but the field of their security assessment is largely unexplored.
Background

- MASs should be conceived also as providers of security functionalities
- The flexibility of the agent paradigm proves very valuable in
 - modelling the different aspects of security schemes
 - capturing the concepts needed for achieving a robust design at the
 most appropriate abstraction levels
- However, a MAS needs a complex underlying infrastructure, whose
 intrinsic security is fundamental for the correct
 - behaviour of agents
 - implementation of the policy to be enforced

Various solutions exist for the design of MAS-supporting platforms [Yamazaki et al., 2004, Bordini et al., 2006, JADE, 2005]... but the field of their security assessment is largely unexplored
Background

- MASs should be conceived also as providers of security functionalities
- The flexibility of the agent paradigm proves very valuable in
 - modelling the different aspects of security schemes
 - capturing the concepts needed for achieving a robust design at the most appropriate abstraction levels
- However, a MAS needs a complex underlying infrastructure, whose intrinsic security is fundamental for the correct
 - behaviour of agents
 - implementation of the policy to be enforced
- Various solutions exist for the design of MAS-supporting platforms and for exploiting a MAS as a security provider
 [Yamazaki et al., 2004, Bordini et al., 2006, JADE, 2005] ...
Background

- MASs should be conceived also as providers of security functionalities.
- The flexibility of the agent paradigm proves very valuable in:
 - modelling the different aspects of security schemes
 - capturing the concepts needed for achieving a robust design at the most appropriate abstraction levels
- However, a MAS needs a complex underlying infrastructure, whose intrinsic security is fundamental for the correct:
 - behaviour of agents
 - implementation of the policy to be enforced
- Various solutions exist for the design of MAS-supporting platforms and for exploiting a MAS as a security provider:
 - Yamazaki et al., 2004, Bordini et al., 2006, JADE, 2005
- But the field of their security assessment is largely unexplored.
Our case study

- Reference domain: access control system
- Case study: management of the access control to a university building [Molesini et al., 2009]
- System’s scenario:
The developing methodology

- The case study was analysed and designed [Molesini et al., 2009] according to SODA
- SODA is an agent-oriented methodology for the analysis and design of agent-based systems
 - ... adopts agents and artifacts (A&A meta-model) as the main building blocks for MAS development
 - agents model individual and social activities
 - artifacts are adopted for the environment engineering since they glue agents together, as well as MAS and the environment
The system logical architecture [Molesini et al., 2009]
Risk analysis

- Risk analysis is a part of the more general process called “Security risk assessment and management” [Sommerville, 2007]
Risk analysis

Risk analysis is a part of the more general process called “Security risk assessment and management” [Sommerville, 2007]

Risk analysis should start from the identification of the system’s
- **assets** – the system resources to be protected because of their value
- **exposures** – represent the possible loss or harm that results from a successful attack
- **threats** –
 - fortuitous events – flooding, storms, etc.
 - deliberate attacks – sniffing, spoofing, etc.
System’s assets, values and exposures

<table>
<thead>
<tr>
<th>Asset</th>
<th>Value</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Artifact</td>
<td>high</td>
<td>medium</td>
</tr>
<tr>
<td>Admin Artifact</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>User Artifact</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Building-State Artifact</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Room-Admin Artifact</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>User-room Artifact</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Appointment Artifact</td>
<td>medium</td>
<td>medium</td>
</tr>
<tr>
<td>User Manager</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Access Manager</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>R-Access Manager</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Room Manager</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Physical Device</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>high</td>
<td>high</td>
</tr>
</tbody>
</table>
System’s threats

<table>
<thead>
<tr>
<th>Threat</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stealing admin credential</td>
<td>low</td>
</tr>
<tr>
<td>Stealing user credential</td>
<td>high</td>
</tr>
<tr>
<td>Personifying user</td>
<td>high</td>
</tr>
<tr>
<td>Social Engineering</td>
<td>high</td>
</tr>
<tr>
<td>Introducing malicious agent</td>
<td>medium - high</td>
</tr>
<tr>
<td>Disappearing agent</td>
<td>medium - high</td>
</tr>
<tr>
<td>Agent bugs</td>
<td>high</td>
</tr>
<tr>
<td>Modifying agent code</td>
<td>low - medium</td>
</tr>
<tr>
<td>Tampering artifact data</td>
<td>high - very high</td>
</tr>
<tr>
<td>Sniffing artifact data</td>
<td>high - very high</td>
</tr>
<tr>
<td>Artifact bugs</td>
<td>high</td>
</tr>
<tr>
<td>Replacing artifact</td>
<td>medium - high</td>
</tr>
<tr>
<td>Men in the middle</td>
<td>medium - high</td>
</tr>
<tr>
<td>Sniffing communication</td>
<td>medium - high</td>
</tr>
<tr>
<td>Damaging physical device</td>
<td>high</td>
</tr>
</tbody>
</table>
Threats for each asset

<table>
<thead>
<tr>
<th>Threat</th>
<th>Asset</th>
<th>Interface Artifact</th>
<th>Admin Artifact</th>
<th>User Artifact</th>
<th>Building-State Artifact</th>
<th>Room-Admin Artifact</th>
<th>User-room Art.</th>
<th>Appointment Artifact</th>
<th>User Manager</th>
<th>Access Manager</th>
<th>R-Access Manager</th>
<th>Room Manager</th>
<th>Physical Device</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stealing admin credential</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stealing user credential</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personifying user</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Engineering</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introducing malicious agent</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disappearing agent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agent bugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modifying agent code</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tampering artifact data</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sniffing artifact data</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artifact bugs</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacing artifact</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men in the middle</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sniffing communication</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damaging physical device</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Molesini (Univ. Bologna)
Risk analysis
ICAART 2010, 22/01/2010
Security deployment issues

- Assumption: all the infrastructures exhibit the same basic set of concepts
Security deployment issues

- Assumption: all the infrastructures exhibit the same basic set of concepts

 Nodes — logical *loci* where agents and artifacts can be allocated
Security deployment issues

- Assumption: all the infrastructures exhibit the same basic set of concepts
 - **Nodes** — logical *loci* where agents and artifacts can be allocated
 - **Artifacts** — passive components of the systems
Security deployment issues

- Assumption: all the infrastructures exhibit the same basic set of concepts

 Nodes — logical *loci* where agents and artifacts can be allocated
 Artifacts — passive components of the systems
 - *resource artifacts* — wrap external resources
Security deployment issues

- Assumption: all the infrastructures exhibit the same basic set of concepts

 Nodes — logical *loci* where agents and artifacts can be allocated

 Artifacts — passive components of the systems
 - *resource artifacts* — wrap external resources
 - *social artifacts* — mediate between two or more agents in a MAS
Security deployment issues

- Assumption: all the infrastructures exhibit the same basic set of concepts

 Nodes — logical *loci* where agents and artifacts can be allocated

 Artifacts — passive components of the systems

 ▶ *resource artifacts* — wrap external resources

 ▶ *social artifacts* — mediate between two or more agents in a MAS

 ▶ *individual artifacts* — mediate between an individual agent and the environment
Security deployment issues

- Assumption: all the infrastructures exhibit the same basic set of concepts

 Nodes — logical *loci* where agents and artifacts can be allocated

 Artifacts — passive components of the systems
 - *resource artifacts* — wrap external resources
 - *social artifacts* — mediate between two or more agents in a MAS
 - *individual artifacts* — mediate between an individual agent and the environment

 Agents — pro-active components of the systems
Artifacts security deployment issues

- The artifacts deployment is critical from the security viewpoint.
Artifacts security deployment issues

- The artifacts deployment is critical from the security viewpoint
 - resource artifacts abstract the functions and behaviours of devices
Artifacts security deployment issues

- The artifacts deployment is critical from the security viewpoint
 - resource artifacts abstract the functions and behaviours of devices
 - smart device = artifact + physical device

Molesini (Univ. Bologna)
Artifacts security deployment issues

- The artifacts deployment is critical from the security viewpoint
 - resource artifacts abstract the functions and behaviours of devices
 - smart device = artifact + physical device
 - smart device should be protected in order to prevent possible artifact tampering, replacement and sniffing
Artifacts security deployment issues

- The artifacts deployment is critical from the security viewpoint
 - resource artifacts abstract the functions and behaviours of devices
 - \textit{smart device} = artifact + physical device
 - smart device should be protected in order to prevent possible artifact tampering, replacement and sniffing
 - physical devices should be protected so that the “artifacts corruption” does not damage the integrity and confidentiality of the devices
Artifacts security deployment issues

- The artifacts deployment is critical from the security viewpoint
 - **resource artifacts** abstract the functions and behaviours of devices
 - smart device = artifact + physical device
 - smart device should be protected in order to prevent possible artifact tampering, replacement and sniffing
 - physical devices should be protected so that the “artifacts corruption” does not damage the integrity and confidentiality of the devices
 - **social artifacts** are the core of interactions
Artifacts security deployment issues

- The artifacts deployment is critical from the security viewpoint
 - resource artifacts abstract the functions and behaviours of devices
 - *smart device* = artifact + physical device
 - smart device should be protected in order to prevent possible artifact tampering, replacement and sniffing
 - physical devices should be protected so that the “artifacts corruption” does not damage the integrity and confidentiality of the devices
 - social artifacts are the core of interactions
 - agents use them for communicating with each other
Artifacts security deployment issues

- The artifacts deployment is critical from the security viewpoint
 - **resource artifacts** abstract the functions and behaviours of devices
 - ★ *smart device* = artifact + physical device
 - ★ smart device should be protected in order to prevent possible artifact tampering, replacement and sniffing
 - ★ physical devices should be protected so that the “artifacts corruption” does not damage the integrity and confidentiality of the devices
 - **social artifacts** are the core of interactions
 - ★ agents use them for communicating with each other
 - ★ their deployment is critical and should take into account all the measures to ensure that they remain trusted
Artifacts security deployment issues

- The artifacts deployment is critical from the security viewpoint
 - resource artifacts abstract the functions and behaviours of devices
 - *smart device* = artifact + physical device
 - smart device should be protected in order to prevent possible artifact tampering, replacement and sniffing
 - physical devices should be protected so that the “artifacts corruption” does not damage the integrity and confidentiality of the devices
 - social artifacts are the core of interactions
 - agents use them for communicating with each other
 - their deployment is critical and should take into account all the measures to ensure that they remain trusted
 - individual artifacts equip agents with all the protocols they can adopt for interacting
Artifacts security deployment issues

- The artifacts deployment is critical from the security viewpoint
 - **resource artifacts** abstract the functions and behaviours of devices
 - *smart device* = artifact + physical device
 - smart device should be protected in order to prevent possible artifact tampering, replacement and sniffing
 - physical devices should be protected so that the “artifacts corruption” does not damage the integrity and confidentiality of the devices
 - **social artifacts** are the core of interactions
 - agents use them for communicating with each other
 - their deployment is critical and should take into account all the measures to ensure that they remain trusted
 - **individual artifacts** equip agents with all the protocols they can adopt for interacting
 - their deployment is particularly critical, since the corruption of this kind of artifact could allow a malicious agent to misbehave
Agent security deployment issues

- In a system developed according to the A&A meta-model, only agents can take proactive security measures

Other malicious agents and corrupted artifacts can induce agent misbehaviour.
Agent security deployment issues

- In a system developed according to the A&A meta-model, only agents can take proactive security measures.
- A smart device can be made even smarter by introducing a device manager agent to detect and promptly face dangerous situations.
Agent security deployment issues

- In a system developed according to the A&A meta-model, only agents can take proactive security measures
- A smart device can be made even smarter by introducing a device manager agent to detect and promptly face dangerous situations
- The agents present several vulnerabilities and are subject to different threats
Agent security deployment issues

- In a system developed according to the A&A meta-model, only agents can take proactive security measures.
- A smart device can be made even smarter by introducing a device manager agent to detect and promptly face dangerous situations.
- The agents present several vulnerabilities and are subject to different threats.
- In particular, autonomy, pro-activity and learning capabilities could act as drawbacks from the security viewpoint. These properties restrict the designer’s control on the agent execution flow.
Agent security deployment issues

- In a system developed according to the A&A meta-model, only agents can take proactive security measures.
- A smart device can be made even smarter by introducing a device manager agent to detect and promptly face dangerous situations.
- The agents present several vulnerabilities and are subject to different threats.
- In particular, autonomy, pro-activity and learning capabilities could act as drawbacks from the security viewpoint.
 - These properties restrict the designer’s control on the agent execution flow.
- Other malicious agents and corrupted artifacts can induce agent misbehaviour.
Deployment configurations

- Analysis of the “deployment requirements” coming from the physical world
Deployment configurations

- Analysis of the “deployment requirements” coming from the physical world
 - four logical nodes labelled Node 1, Node 2, Node 3, Node 4
Analysis of the “deployment requirements” coming from the physical world

- four logical nodes labelled Node 1, Node 2, Node 3, Node 4
- the physical resources are allocated respectively in
 - the device capturing the user credential → Node 2
 - the administrator position → Node 3
 - the database → Node 4

Assumption: the protection of these devices is realised at the infrastructural level.
Deployment configurations

- Analysis of the “deployment requirements” coming from the physical world
 - four logical nodes labelled *Node 1*, *Node 2*, *Node 3*, *Node 4*
 - the physical resources are allocated respectively in
 - the device capturing the user credential → *Node 2*
 - the administrator position → *Node 3*
 - the database → *Node 4*
 - assumption: the protection of these devices is realised at the infrastructural level...
Deployment configurations

- Analysis of the “deployment requirements” coming from the physical world
 - four logical nodes labelled Node 1, Node 2, Node 3, Node 4
 - the physical resources are allocated respectively in
 - the device capturing the user credential → Node 2
 - the administrator position → Node 3
 - the database → Node 4
 - assumption: the protection of these devices is realised at the infrastructural level...
 - here we focalise only the MAS security deployment
Centralised and distributed deployments

Node 4

Node 3

Node 1

Node 2
Centralised deployment

- It is sufficient to build a “secure boundary” around Node 1 to obtain a “secure” system
- The compromission of a single software entity means that the secure boundary of Node 1 is broken
- The threat probabilities regarding the assets increases
 - an attacker will try to force Node 1 for accessing the system
 - the threat probabilities regarding the intra-MAS communications decrease
- The chosen protection mechanisms should be suitable for protecting the more valuable asset
 - the costly, effective countermeasures have to be sized to protect the whole Node 1, including less valuable assets
Distributed deployment

- All the system entities and the communication channels need to be protected
- Decoupling the exposures level of assets, choosing the most suitable protection mechanism for each
- Leading to reduce the inter-dependency between threat probabilities
- Presenting higher probability values associated with intra-MAS communication

→ the communications between entities always occur between network nodes

- The compromission of one node does not automatically implies the compromission of the whole system
In this paper we have

- explored the topic of security assessment in a MAS, taking a MAS-based access control system as our reference
- performed a detailed risk analysis then, we studied how the deployment choices can influence the opportunity for attacks and the effects of their success

Our deployment analysis can be situated at the end of the design phase in order to identify the “most adequate” deployment strategy in terms of security assessment

Beyond the valuable context-specific results, the work hopefully provides an excellent opportunity for further, broader research
Future works

- Our work is just the starting point of the story
- Much broader research is needed to
 - devise a general model of the security requirements for MAS-based systems → opening the way towards the integration of security aspects into a suitable agent-oriented design methodology
 - further investigations concerning the security issues at the infrastructural level → the role of the MAS infrastructures is becoming more and more relevant in the whole MAS development process
Bibliography I

In *Engineering Societies in the Agents World IX*, volume 5485 of *LNCS*. Springer.

Addison-Wesley.
Risk analysis and Deployment Security Issues in a Multi-agent System

Ambra Molesini & Marco Prandini
Elena Nardini & Enrico Denti
{ambra.molesini, marco.prandini,
elena.nardini, enrico.denti}@unibo.it

Alma Mater Studiorum—Università di Bologna

ICAART 2010, Valencia, Spain, 22nd January 2010