

Dissipative Cellular Automata As Minimalist Distributed Systems:
A Study On Emergent Behaviors

Marco Mamei1, Andrea Roli2, Franco Zambonelli1
1Dipartimento di Scienze e Metodi dell’Ingegneria – Università di Modena e Reggio Emilia

Via Allegri 13 – 42100 Reggio Emilia, Italy
2Dipartimento di Elettronica Informatica e Sistemistica – Università di Bologna

Viale Risorgimento 2, 40136 Bologna, Italy
mamei.marco@unimo.it, aroli@deis.unibo.it, franco.zambonelli@unimo.it

Abstract
This paper describes the behavior observed in a class of
cellular automata that we have defined as "dissipative", i.e.,
cellular automata for which the external environment can
somehow inject "energy" to dynamically influence the
evolution of the automata. In this class of cellular automata,
we have observed that stable macro-level global structures
emerge from local interactions among cells. Since dissipative
cellular automata express characteristics strongly resembling
those of open distributed systems, we expect that similar sorts
of macro-level behaviors are likely to emerge in real world
systems of the same nature and need to be studied, controlled,
and possibly fruitfully exploited. A preliminary set of
experiments reporting two ways of indirectly controlling the
behavior of DCA are reported and discussed w.r.t. the
possibility of applying similar sort of indirect control on open
distributed systems.

1. Introduction

Engineering distributed systems is notoriously a
challenging task. One of the main problems is that
designing system’s component in isolation, on the basis
of the consolidated structured design principles (and thus
following a reductionist approach) tend to miss those
features arising when the system’s components executes
concurrently, in a common environment, influencing each
other behavior. These system-level features, usually
referred as system’s emergent behaviors, may have a
very strong impact on the overall system’s behavior. For
example, it has been recently discovered that the Internet
and the Web have evolved and behave in rather peculiar
and unexpected (emergent) way, strongly impacting on
performance and reachability of information [2].

The analysis of emergent behavior has been almost
completely neglected by current best practices in
engineering distributed systems, however as the

consequence that these systemic behaviors starts to be
widely recognized, more and more researches address
this topic, trying to exploit these emergent behaviors to
engineering and control complex distributed systems.
Works on swarm based systems [4, 15], amorphous
computers [1], cellular automata [3, 20, 21], etc. share
the idea of studying and engineering system’s level (i.e.
emergent) behaviors to control distributed systems.

In this context, this paper discusses some experiments
that we have performed on a new class of cellular
automata that we have defined as Dissipative Cellular
Automata (DCA). DCA differ from "traditional" cellular
automata [20, 21] in two characteristics: while
"traditional" cellular automata are composed of cells that
interact with each other in a synchronous way and that
are influenced in their evolution only by the internal state
of the automata themselves, dissipative ones are
asynchronous and open. First, cells in the DCA update
their status independently of each other, in an
"autonomous" way. Second, the automata live dipped in
an environment that can directly influence the internal
behavior of the automata, as in open systems. We think
that openness will be a key issue in next generation
distributed applications. The Internet and the upcoming
embedded computer networks will soon rend obsolete the
idea of designing a system completely isolated from the
rest of the world, and environmental influences and
openness in general will soon become prime design
concerns. With this perspective, DCA can be considered
as a minimalist open distributed system [7, 11, 19, 23]
and, as that, their dynamic behavior is likely to provide
useful insight into the behavior of real-world systems.

DCA exhibit peculiar interesting behavior, as the
experiments reported in this paper show. During the
dynamic execution of the DCA, stable macro-level spatial
structures emerge from local interactions among cells, a
behavior that does not emerge when the cellular

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

automaton is synchronous and closed (i.e., when the state
of a cell is not influenced by the environment). On this
basis, the paper argues that similar sort of macro-level
behaviors are likely to emerge in distributed systems
populating the Internet and our physical spaces. Such
behaviors are likely to dramatically influence the overall
behavior of our networks at a very large scale. This may
require new models, methodologies, and tools, explicitly
taking into account the environmental dynamics, and
exploiting it during software design and development
either defensively, to control its effects on the system, or
constructively, as an additional design dimension.

On this basis, the paper also shortly describes two
different methodologies that we have tried to apply in
order to indirectly control emergent behaviors in DCA
(i.e., to control which pattern, among the several possible
ones, to make emerge in a DCA). Finally, the paper
discusses how similar sorts of indirect control can
possibly applied to open, distributed systems.

2. Cellular Automata

Cellular Automata (CA) are regular lattices of cells, each
one being a finite-state automaton. According to simple
dynamics, cells update their state depending on a
(typically simple) state transition function of their state
and of the state of neighboring cells. The scientific
interest on CA comes primarily from the fact that, despite
the simplicity of local rules, they can show complex
global behaviors.

Formally, a CA is statically defined by a quadruple:

A = (S , d , V , f),

where S is the finite set of possible states a cell can
assume, d is the dimension of the automaton, V is the
neighborhood structure, and f is the local transition rule.
The automaton structure is a d-dimensional discrete grid

L=Ζd, where Z is the set of integers. Each cell is
identified with an array of d components i=(i1,...,id)∈L

which represent the coordinates of the cell in the grid. It
is generally assumed that the grid is infinite, either not
limited or closed to a d-dimensional torus. The state of a
cell is expressed as a variable x whose domain is defined
by S; and the ordered list of cell states defines the CA
global state X. The neighborhood structure V defines
which cells "influence" any cell. V is defined as a
function V:L→℘(L) which maps a cell to a set of cells.
The neighborhood structure is regular and isotropic, i.e.,
V has the same definition for every cell. Usually, V is a
subset of the group of translations in L. Finally, the local

transition rule is a function f:SV→S which maps a
configuration of states in a neighborhood to a state. The

transition rule defines the future state of a cell depending
on the state of its neighbors (and, possibly, the state of
the cell itself). f is typically the same for each cell
(uniform CA).

While the above defined quadruple A specifies the
"static" characteristics of an automaton, the complete
description of a CA requires the definition of its
dynamics, i.e., of the dynamics ruling the update of the
state of the CA cells. The usual definition of CA is with
synchronous dynamics: cells update their state in parallel
at each time step. However, synchronous dynamics is
hardly representative of real-world phenomena, making it
not suited for the modeling and the simulation of those
phenomena involving a population of autonomous
interacting elements, for which asynchronous dynamics
have to be introduced. In the experiments presented in
this paper, CA have an asynchronous dynamics [10, 12]:
at each time, one cell has a uniform probability of rate λa
to autonomously wake up and update its state.

Figure 1: State of a cyclic attractor in a
synchronous CA - RULE A

Figure 2: A fixed point attractor in an
asynchronous CA - RULE A

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

The behavior of a CA under synchronous and
asynchronous dynamics can be very different [17, 20]. As
an example, let us consider a 2-states CA (V={0,1},
where cells are said to be dead or alive, respectively), the
Moore neighborhood structure (the neighbors of a cell
are the 8 one defining a 3x3 square around the cell itself)
and the following transition rule (RULE A):

f = {a died cell gets alive iff it has 2 neighbors

alive; a living cells lives iff it has 1 or 2
neighbors alive}

Once a synchronous CA starts to evolve from an initial
random situation, the states of all cells synchronously
change accordingly to the above rule, and after a transient
eventually reaches the final cyclic attractor of which one
of the composing global states is shown in Figure 1.
Figure 2 shows the same CA having evolved accordingly
to asynchronous dynamics: the CA usually reaches a
fixed-point attractor that its synchronous counterpart has
never been observed to be able to reach.

3. Dissipative Cellular Automata

3.1. Description

CA studied so far are closed systems, as they do not take
into account the interaction between the CA and an
environment. Instead, the new class of CA that we have
studied is, in addition to asynchronous, "open", in the
sense that the dynamic behavior of the CA can be
influenced by the external environment. From an
operative point of view, the openness of the CA implies
that some cell are forced from the external to change its
state, independently of the cell having evaluated its state
and independently of the transition function (Figure 3).

By considering a thermodynamic perspective, one can
consider this manifestation of the external environment in
terms of energy flows: forcing a cell to change its state
can be considered as a manifestation of energy flowing
into the system and influencing it [14]. This similarity
with thermodynamic systems made us call this kind of
CA as dissipative cellular automata (DCA), in that the
DCA consumes external energy to reach a final (regular,
as shown in the following) configuration.
Formally a DCA can be considered as:

• A = (S , d , V , f);
• asynchronous dynamics (with uniform

distribution of rate λa);
• a perturbation action ϕ(α,D).

where A is the quadruple defining a CA, the dynamics is
the one already discussed in Subsection 3.1, and the
perturbation action ϕ is a transition function which acts
concurrently with f and can change the state of any of the
CA cells to a given state α with some probabilistic
distribution D, independently of the current state of the
cells and of their neighbors. Specifically, in our
experiments with V={0,1}, α=1 and D is a uniform
distribution of rate λe.

CA Grid

External “energy”
influencing cells’ state

Figure 3: Dissipative cellular automata

3.2. Emergent Behaviors

The behavior exhibited by DCA is dramatically different
from both their synchronous and closed asynchronous
counterparts. In general, when the degree of perturbation
(determined by λe) is high enough to effectively perturb
the internal dynamic of the DCA (determined by the rate
of cell updates λa) but it is still not prevailing over it so as
to make the behavior of the DCA almost random (which
happens when λe is comparable λa), peculiar patterns
emerge. The interested reader can refer to the page
http://www.agentroup.unimo.it/DCA/ to repeat the
experiments on-line.

We have observed that the perturbation on the cells
induced by the external - while keeping the system out of
equilibrium and making impossible for it to reach any
equilibrium situation - makes the DCA develop large
scale regular spatial structures. Such structures exhibit
long-range correlation between the state of the cells,
emerged despite the strictly local and asynchronous
transition rules, and breaks the spatial symmetry of the
final state. In addition, such structures are stable, despite
the continuous perturbing effects of the external
environment.

As an example, Figure 4 shows a pattern emerged
from a DCA, both exhibiting stable macro-level spatial
structures. For this DCA, the transition rules and the
neighborhood structure are the same of the CA described
in Section 2: the presence of global-scale patterns -
breaking the spatial symmetry of the automata - is
evident. As another example, Figure 5 shows a typical

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

pattern emerged for a DCA with a neighborhood
structure made up of 12 neighbors (all cells having a
maximum distance of 2 from the cell itself) and with the
following transition rule (RULE B):

f = {a died cell gets alive iff it has 6 neighbors

alive; a living cells lives iff it has 3,4,5, or 6
neighbors alive}

Again it is possible to see large-symmetry breaking

patterns emerge, extending to a larger scale than the local
patterns emerging under asynchronous but closed regime
(Figure 6).

The phenomenon underlying the behavior of DCA are
very similar of the ones determining the emergence of
large-scale structures in dissipative systems [14], e.g., in
Bénard's cells, where, the temperature gradient between
the two plates is substituted by the ratio λe /λa. When this
ratio is small, expressing small perturbations, each
autonomous component (a DCA cell), acting
asynchronously accordingly to strictly local rules, tend to
reach a local equilibrium (or a strictly local dynamics),
which reflects in a global uniform equilibrium of the
whole system. When the ratio λe /λa ratio increases, the
system is kept in a substantial out-of-equilibrium
situation, resulting in continuous attempt to locally re-
establish equilibrium. This typically ends up with cell
groups having found new equilibrium states more robust
with regard to the perturbation (or compatible with it).
Such stable local patterns start soon dominating and
influencing the surrounding, in a sort of enforcing
feedback, until a globally coordinated (i.e., with large
scale spatial patterns) and stable situation emerges. When
the degree of perturbation is high enough to avoid local
stable situations to persist for enough time, they can no
longer influence the whole systems, and the situation
becomes turbulent: spatial patterns disappear and the
DCA dynamics becomes highly disordered. Detailed
quantitative analysis are in progress

4. Open Distributed Systems Vs. DCA

There are three characteristics that are typical of open
distributed systems (and that are more and more
characterizing all types of software systems) that are
reflected in DCA: autonomy of components, locality in
interactions, situatedness in an open and dynamic
environment.

Components of a distributed system are autonomous
entities [6, 8, 11, 19], in that their execution is not subject
to a global flow of control. Instead, the execution may
proceed asynchronously, and the component's state
transition occur accordingly to local internal timings.
This is actually what happens, because of the adopted

dynamics, in DCA: each state transition in a DCA cell is
driven by an internal clock, which is independent from
the clock - and the state transitions - of the other DCA
cells.

For the sake of scalability and efficiency, distributed
systems typically execute in a spatially bounded
distributed domain, and wide-area - inter-organizations -
interactions are limited as much as possible [6]. In DCA,
a cell interacts with (that is, can check the state of) only a
limited number of other cells in its neighborhood.

Figure 4: A Behavior evolved in a DCA - RULE A

Figure 5: A behavior evolved in a DCA - RULE B

Figure 6: A stabilized situation in an
asynchronous closed CA - RULE B

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Components are situated entities that live dipped in an
environment, whether a computational one, e.g., a Web
site, or a physical one, e.g., a room or a manufacturing
unit to be controlled. The component is typically
influenced in its execution (i.e., in its state transitions) by
the events happening in the environment. In this sense,
distributed systems are "open systems": the global
evolution of the system may be influenced by the
environment in which it lives [6, 16]. And, in most of the
cases, the environment possesses a dynamics that is not
controllable or foreseeable. For instance, the
computational resources, the data, the services, as well as
the other components to be found on a given Web site
cannot be predicted and they are likely to change in time.
Analogously, the temperature and lightening condition in
a room that a component is devoted to control may vary
dynamically for a number of reasons that cannot be
predicted. This sort of openness is the same that we can
find in DCA, where the perturbation of the environment,
changing the internal state of a cell, can make us consider
the cell as situated in an environment whose
characteristics dynamically change in an unpredictable
way.

Given the above similarities, and given that the
characteristics leading to the observed DCA behaviors
are present in most of today's distributed systems there
are very good reason to presume that similar strange
behaviors will be observed as soon as these systems will
start populating the Internet and our physical
environments.

4.1. Defending from Undesired Emergent
Behaviors

The reported experiments open up the possibility that a
distributed system immersed in a open and dynamic
environment may exhibit behaviors very different from
the ones it was programmed for. Of course, this is not
desirable and may cause highly damaging effects [16].
For instance, in the case of Internet pricing systems, and
despite theoretical equilibrium results, environmental
dynamics can make macro-level spatial patterns emerge,
leading to great price differences in different sites of the
planet. In the case of cooperative distributed information
retrieval, this may cause a large amount of available
information to be left out from the search, while making
the remaining part over-accessed.

Accordingly, we think that a re-thinking of the
methodologies currently adopted for the design,
development, and maintenance of open, distributed
systems is required to avoid such situations to occur, or at
least to be able to predict and control them. By now,
software systems are designed in a mechanical way,

component by component, so as to exhibit a specific,
deterministic behavior. Such approach immediately fails
when a large number of autonomous components are
involved. Modern distributed systems researches
recognize this problem, and have gone farther, by
approaching the study of engineering such systems in
more systemic, macro-level, terms [11]. The next
challenge is approaching the study of distributed systems
by making the environment and its dynamics play a
central role. In other words, one should design a system
so as to make it exhibit, under a wide range of
environmental conditions, the desired global behavior,
disregarding if necessary the full understanding of the
behavior of its components, and rather trying to
understand the behavior of the system as a whole
depending on the environmental conditions. Possibly, a
software system should be designed so as to be able to re-
adapt itself dynamically and make its internal dynamics
contrast the environmental one.

As a consequence of the macro-level approach and of
the primary role of environmental dynamics, open and
distributed systems will be no longer tested with the goal
of finding errors in them (or in their components), but
they will be rather tested with regard to their capability of
behaving as needed as a whole, independently of the
exact behavior of its component, and under the
environmental conditions in which the system is expected
to operate when released. It is also important to note that,
in most of the cases, a newly deployed software system
will execute in an environment where other systems
already executes. Thus, the new software system will
impact on the environmental condition of the pre-existing
systems and, by executing, on their environmental
dynamics. Thus, designing and testing a system will not
only be devoted to make a software system useful, but
also to guarantee that it will not be dangerous to other
systems.

4.2. Exploiting Useful Emergent Behaviors

Clarifying the dynamic influences between multi-agent
systems and their environments can make environmental
dynamics become an additional design dimension, rather
that an enemy to fight.

As a very trivial application example, directly
inspired from the visual appearance of the DCA patterns,
one could think at "intelligent paintings". Paintings can
be made up of active, radio-enabled, micro-components,
able change their colors according to local transition
rules, and making it possible to change the color patterns
via simple radio-commands perturbing the transition rules
and causing a global change in the pattern of a wall. As
another example, the possibility of making global
patterns emerge from a system relying on local

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

interactions could be exploited so as to enforce global
control in a wide-area distributed system with very low
efforts.

More generally, one could think at exploiting the
environmental dynamics to control and influence a open,
distributed system from "outside the loop" [19], that is,
without intervening on the system itself. In a world of
continuous computations, where decentralized software
systems are always running and cannot be stopped (this is
already the case for Internet services and for embedded
sensors) changing, maintaining and updating systems by
stopping and re-installing them is not the best solution,
and it could not be always feasible. Instead, given the
availability of proper models and tools, one could
envision the possibility of influencing the system without
stopping it, simply forcing specific environmental
dynamics changing the global behavior of the system so
as to make it exhibit the required behavior.

5. Controlling DCA Behavior

Form the previous discussion, it turns out that it would be
of fundamental importance to have the possibility of
controlling emergent behaviors in DCA. In fact, by
considering again the relations with distributed
computing, having the possibility of controlling emergent
behavior may open up the doors to both defending from
the emergence of undesirable behaviors and exploiting
useful behaviors by making them emerge as needed.

However, due to the characteristics of such systems
(large number of components, large-scale distribution,
autonomy of components) one cannot think at imposing
behavior via direct control on all its components. Instead,
such control must be as much distributed and
decentralized as possible, and can rely only on he
possibility of controlling a few components of the
systems, without making any assumption on the
possibility of controlling all components and their
dynamic interactions.

To this end, we experienced two complimentary way
of controlling DCA behaviors, both having lead to
successful, and rather surprising, results.

5.1. Rule-based Control

The rule-based methodology we have experienced
amount at changing the rules determining state transitions
in cells. With respect to distributed systems, such rule
changes would translate in injecting in components of a
the system (e.g., via mobile code technologies) some new
working parameters and activities. In the DCA, to make a
desired pattern emerge, the rule as to change so as to
make (some of the) cells recognize that the cells in the
neighborhood are in the right configuration, i.e., in a

configuration that approaches the configuration that
would be required for the required pattern to emerge out
of the DCA evolution.

Among a variety of possible rule modifications, we
have found that such rule modification should not be too
strict, e.g., a cell should lives if and only if its
neighborhood is in one of the possible configurations that
would have assumed in the presence of the desired
pattern. For such strict rules, all cells in the automata
quickly die. Instead, we have found out that such rules
modifications have to be very weak and, counter-
intuitively, should enable a cell to get to life and live in a
wider range of configuration than the unmodified rule
allow. For instance, given the generic rule:

f = {a died cell gets alive iff it has between D1 and

D2 neighbors alive; a living cells lives iff it has
between L1 and L2 neighbors alive}

The simple modified rule mf that enables a specific
pattern to emerge is in the form:

mf = {rule f OR a cell must live and get alive as soon

as the there are alive neighbor cells in one of
the correct configuration w.r.t. the desired
patterns}

which can re-phrased as follows: a cell must follows the
normal transition rules, however, independently of that,
and independently on the number of alive and died cells,
a cell must get to life whenever in the neighborhood there
are alive cells in the right position.

Applying the mf rule, we have been able to make any
desired pattern emerge from any initial configuration
from a DCA, independently of the chosen f rule and
independently of the dimension of the DCA grid. Of
course, such configuration emerges only in the presence
of a correct range of value for the λe /λa ratio. For
instance, we have been able to make the pattern of Figure
7 emerge from a DCA by applying the modified rule B, a
pattern that emerged only very rarely (about 0,01% of the
cases) in previous experiments.

Of course, for a control methodology to be applicable
to large distributed systems, it must not assume the
capability of influencing the behavior of all the
components of the system. For this reason, we have tested
the rule-based methodology also by modifying the rule
only in a sub-set of the DCA cells. Such experiences have
been very satisfying, in that the rule-based enables to
make the desired pattern emerge even when only a very
low percentage (down to 30%) of the cells applies the
modified rules.

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

5.2. Generalization-based Control

The generalization-based methodology starts from
totally different considerations, and gets its inspiration
from Hopfield's work on neural networks [9]. It is known
that Hopfield's networks can generalize a pattern from
imposition of a partial pattern. Should DCA exhibit such
generalization property, controlling them would imply
initializing a localized sub-set of the DCA cells in accord
to the desired patterns (see Figure 8), and then let the
DCA evolve by making the global pattern spontaneously
emerge from the local imposition. In the case of a
distributed system, such methodology would require the
possibility of controlling the activities of a local cluster of
components, and then let this locally imposed control
diffuse to the whole system.

Figure 7. Rule-based methodology: a rare pattern
whose emergence can be controlled

Figure 8. Generalization-based methodology: a
local pattern imposed on a portion of a DCA
grid.

At the beginning, we were not really convinced of
DCA possessing such generalization property. Instead,
rather surprisingly, we found out that, for a few rules we
have experienced, such methodology worked well: for a

desired global rule to emerge of a 40x40 DCA grid, we
had to initialize a local portion of about 20% of the
global grid size. In the case of a distributed system, this
means for instance that controlling the initial state of
cluster of a few hundred components may be enough to
influence a distributed system of several thousands.

Further experiments have to be performed to analyze
in better detail such generalization properties, and to
quantify their capability of working in larger grids and
for larger sets of rules.

6. Conclusions and Future Work

Large-scale spatial patterns, not observed under closed
regime, emerge in open DCA. Since open distributed
systems exhibits all of the characteristics of DCA
(autonomy of components and openness) similar sort of
structures are likely to make their appearance as soon as
large systems of this kind will start populating the
Internet. This requires methodologies, and tools, to
predict and control emergent behaviors in these systems,
and enabling to either exploit emergent behaviors as an
additional design dimension, or to prevent undesirable
behaviors.

The experiments reported in this paper – and the two
methodologies proposed to control emergent behaviors –
are indeed preliminary. Currently, we are trying to better
formalize the concepts of "openness" and of
"perturbation", and to characterize and measure the
degree of perturbation and the degree of order of the
emergent patterns. Also, we are trying to define effective
models for controlling emergent behaviors in open
distributed systems, with a key focus on mobility of
components [13]. The main goal is to make our
experiments more and more approximate the
characteristics of real systems in mobile scenarios and,
eventually, to end up with a more realistic simulations.
Also, it would be definitely of interest to verify how and
to which extent the observed behaviors of DCA can
provide useful insights for the understanding of the
evolution of spatial patterns in biological systems [5, 22].

Acknowledgments. Work partially supported by Nokia Research
Center Boston and by MIUR Project “MUSIQUE”.

References
1. H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy,

T. Knight, R. Nagpal, E. Rauch, G. Sussman and R.
Weiss, “Amorphous Computing”, Communications of the
ACM, 43(5), May 2000.

2. R. Albert, H. Jeong, A. Barabasi, “Diameter of the World
Wide Web”, Nature, 401:130-131, 9 Sept. 1999.

3. Y. Bar-Yam. Dynamics of Complex aystems. Addison-
Wesley (reading, MA), 1997.

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

4. E. Bonabeau, M. Dorigo, G. Theraulaz, “Swarm
Intelligence”, Oxford University Press, 1999.

5. J. H. Brown, Macroecology, Univ. of Chicago Press
(Chicago, IL), 1995.

6. G. Cabri, L. Leonardi, F. Zambonelli, “Engineering
Mobile Agent Applications via Context-Dependent
Coordination”, IEEE Transactions on Software
Engineering, 28(11), Nov. 2002.

7. D. Estrin, D. Culler, K. Pister, G. Sukjatme, “Connecting
the Physical World with Pervasive Networks”, IEEE
Pervasive Computing, 1(1):59-69, Jan. 2002.

8. R. Gustavsson, M. Fredriksson, “Coordination and
Control in Computational Ecosystems: A Vision of the
Future”, in Coordination of Internet Agents, A. Omicini
al (Eds.), Springer Verlag, pp. 443-469, 2001.

9. J. J. Hopfield, “Neural Networks and Physical Systems
with Emergent Collective Computational Abilities”,
Proceedings of the National Academy of Science USA,
79:2554-2558, 1982.

10. T. E. Ingerson, R. L. Buvel, “Structure in Asynchronous
Cellular Automata”, Physica D, 10:59-68, 1984.

11. N. R. Jennings, “An Agent-Based Approach for the
Building of Complex Software Systems”,
Communications of the ACM, 117(2), 2000.

12. E. D. Lumer, G. Nicolis, “Synchronous Versus
Asynchronous Dynamics in Spatially Distributed
Systems”, Physica D, 71:440-452, 1994.

13. M. Mamei, L. Leonardi, F. Zambonelli, “Co-Fields:
Towards a Unifying Model for Swarm Intelligence”, 3rd

International Workshop on Engineering Societies in the
Agents’ World, Madrid (E), Sept. 2002.

14. G. Nicolis, I. Prigogine, Exploring Complexity: an
Introduction, W. H. Freeman (NY), 1989.

15. H. V. D. Parunak, “Go to the Ant: Engineering Principles
from Natural Multi-Agent Systems”, Annals of
Operations Research 75:69-101, 1997.

16. H. V. D. Parunak, S. Bruekner, J. Sauter, “ERIM's
Approach to Fine-Grained Agents”, NASA/JPL
Workshop on Radical Agent Concepts, Greenbelt (MD),
2002.

17. B. Schönfisch, A. De Roos, “Synchronous and
Asynchronous Updating in Cellular Automata”,
BioSystems, 51(3):123-143, 1999.

18. M. Sipper, “The Emergence of Cellular Computing”.
IEEE Computer, 37(7):18-26, July 1999.

19. D. Tennenhouse, "Proactive Computing",
Communications of the ACM, May 2000.

20. S. Wolfram, Cellular Automata and Complexity,
Addison-Wesley, 1994.

21. S. Wolfram, A New Kind of Science, Worfram Media
Inc., 2002.

22. J. T. Wootton, “Local Interactions Predict Large-scale
Patterns in Empirically Derived Cellular Automata”,
Nature, 413: 841:844, 25 Oct. 2001.

23. F. Zambonelli, N. R. Jennings, M. J. Wooldridge,
“Organizational Abstractions for the Analysis and Design
of Multi-agent Systems”, 1st Workshop on Agent-
Oriented Software Engineering, LNCS No. 1957, Jan.
2001.

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

