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Abstract 
This paper describes the behavior observed in a class of 
cellular automata that we have defined as "dissipative", i.e., 
cellular automata for which the external environment can 
somehow inject "energy" to dynamically influence the 
evolution of the automata. In this class of cellular automata, 
we have observed that stable macro-level global structures 
emerge from local interactions among cells. Since dissipative 
cellular automata express characteristics strongly resembling 
those of open distributed systems, we expect that similar sorts 
of macro-level behaviors are likely to emerge in real world 
systems of the same nature and need to be studied, controlled, 
and possibly fruitfully exploited. A preliminary set of 
experiments reporting two ways of indirectly controlling the 
behavior of DCA are reported and discussed w.r.t. the 
possibility of applying similar sort of indirect control on open 
distributed  systems.  

1. Introduction 

Engineering distributed systems is notoriously a 
challenging task. One of the main problems is that 
designing system’s component in isolation, on the basis 
of the consolidated structured design principles (and thus 
following a reductionist approach) tend to miss those 
features arising when the system’s components executes 
concurrently, in a common environment, influencing each 
other behavior. These system-level features, usually 
referred as system’s emergent behaviors, may have a 
very strong impact on the overall system’s behavior. For 
example, it has been recently discovered that the Internet 
and the Web have evolved and behave in rather peculiar 
and unexpected (emergent) way, strongly impacting on 
performance and reachability of information [2].  

The analysis of emergent behavior has been almost 
completely neglected by current best practices in 
engineering distributed systems, however as the 

consequence that these systemic behaviors starts to be 
widely recognized, more and more researches address 
this topic, trying to exploit these emergent behaviors to 
engineering and control complex distributed systems. 
Works on swarm based systems [4, 15], amorphous 
computers [1], cellular automata [3, 20, 21], etc. share 
the idea of studying and engineering system’s level (i.e. 
emergent) behaviors to control distributed systems.     

In this context, this paper discusses some experiments 
that we have performed on a new class of cellular 
automata that we have defined as Dissipative Cellular 
Automata (DCA). DCA differ from "traditional" cellular 
automata [20, 21] in two characteristics: while 
"traditional" cellular automata are composed of cells that 
interact with each other in a synchronous way and that 
are influenced in their evolution only by the internal state 
of the automata themselves, dissipative ones are 
asynchronous and open. First, cells in the DCA update 
their status independently of each other, in an 
"autonomous" way. Second, the automata live dipped in 
an environment that can directly influence the internal 
behavior of the automata, as in open systems. We think 
that openness will be a key issue in next generation 
distributed applications. The Internet and the upcoming 
embedded computer networks will soon rend obsolete the 
idea of designing a system completely isolated from the 
rest of the world, and environmental influences and 
openness in general will soon become prime design 
concerns. With this perspective, DCA can be considered 
as a minimalist open distributed system [7, 11, 19, 23] 
and, as that, their dynamic behavior is likely to provide 
useful insight into the behavior of real-world systems.   

DCA exhibit peculiar interesting behavior, as the 
experiments reported in this paper show. During the 
dynamic execution of the DCA, stable macro-level spatial 
structures emerge from local interactions among cells, a 
behavior that does not emerge when the cellular 
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automaton is synchronous and closed (i.e., when the state 
of a cell is not influenced by the environment). On this 
basis, the paper argues that similar sort of macro-level 
behaviors are likely to emerge in distributed systems 
populating the Internet and our physical spaces. Such 
behaviors are likely to dramatically influence the overall 
behavior of our networks at a very large scale. This may 
require new models, methodologies, and tools, explicitly 
taking into account the environmental dynamics, and 
exploiting it during software design and development 
either defensively, to control its effects on the system, or 
constructively, as an additional design dimension. 

On this basis, the paper also shortly describes two 
different methodologies that we have tried to apply in 
order to indirectly control emergent behaviors in DCA 
(i.e., to control which pattern, among the several possible 
ones, to make emerge in a DCA). Finally, the paper 
discusses how similar sorts of indirect control can 
possibly applied to open, distributed systems. 

2. Cellular Automata 

Cellular Automata (CA) are regular lattices of cells, each 
one being a finite-state automaton. According to simple 
dynamics, cells update their state depending on a 
(typically simple) state transition function of their state 
and of the state of neighboring cells. The scientific 
interest on CA comes primarily from the fact that, despite 
the simplicity of local rules, they can show complex 
global behaviors.  

Formally, a CA is statically defined by a quadruple: 
 

A = ( S , d , V , f ), 
 
where S is the finite set of possible states a cell can 
assume, d is the dimension of the automaton, V is the 
neighborhood structure, and f is the local transition rule. 
The automaton structure is a d-dimensional discrete grid 

L=Ζd, where Z is the set of integers. Each cell is 
identified with an array of d components i=(i1,...,id)∈L 

which represent the coordinates of the cell in the grid. It 
is generally assumed that the grid is infinite, either not 
limited or closed to a d-dimensional torus. The state of a 
cell is expressed as a variable x whose domain is defined 
by S; and the ordered list of cell states defines the CA 
global state X. The neighborhood structure V defines 
which cells "influence" any cell. V  is defined as a 
function V:L→℘(L) which maps a cell to a set of cells. 
The neighborhood structure is regular and isotropic, i.e., 
V has the same definition for every cell. Usually, V is a 
subset of the group of translations in L. Finally, the local 

transition rule is a function f:SV→S which maps a 
configuration of states in a neighborhood to a state. The 

transition rule defines the future state of a cell depending 
on the state of its neighbors (and, possibly, the state of 
the cell itself). f is typically the same for each cell 
(uniform CA). 

While the above defined quadruple A specifies the 
"static" characteristics of an automaton, the complete 
description of a CA requires the definition of its 
dynamics, i.e., of the dynamics ruling the update of the 
state of the CA cells. The usual definition of CA is with 
synchronous dynamics: cells update their state in parallel 
at each time step. However, synchronous dynamics is 
hardly representative of real-world phenomena, making it 
not suited for the modeling and the simulation of those 
phenomena involving a population of autonomous 
interacting elements, for which asynchronous dynamics 
have to be introduced. In the experiments presented in 
this paper, CA have an asynchronous dynamics [10, 12]: 
at each time, one cell has a uniform probability of rate λa 
to autonomously wake up and update its state. 

 

 
 

Figure 1: State of a cyclic attractor in a 
synchronous CA - RULE A 

 
 

Figure 2: A fixed point attractor in an 
asynchronous CA - RULE A 
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The behavior of a CA under synchronous and 
asynchronous dynamics can be very different [17, 20]. As 
an example, let us consider a 2-states CA (V={0,1}, 
where cells are said to be dead or alive, respectively), the 
Moore neighborhood structure (the neighbors of a cell 
are the 8 one defining a 3x3 square around the cell itself) 
and the following transition rule (RULE A): 

 
f = {a died cell gets alive iff it has 2 neighbors 

alive; a living cells lives iff it has 1 or 2 
neighbors alive}  

 
Once a synchronous CA starts to evolve from an initial 
random situation, the states of all cells synchronously 
change accordingly to the above rule, and after a transient 
eventually reaches the final cyclic attractor of which one 
of the composing global states is shown in Figure 1. 
Figure 2 shows the same CA having evolved accordingly 
to asynchronous dynamics: the CA usually reaches a 
fixed-point attractor that its synchronous counterpart has 
never been observed to be able to reach. 

 

3. Dissipative Cellular Automata 

3.1. Description 

CA studied so far are closed systems, as they do not take 
into account the interaction between the CA and an 
environment. Instead, the new class of CA that we have 
studied is, in addition to asynchronous, "open", in the 
sense that the dynamic behavior of the CA can be 
influenced by the external environment. From an 
operative point of view, the openness of the CA implies 
that some cell are forced from the external to change its 
state, independently of the cell having evaluated its state 
and independently of the transition function (Figure 3).  

By considering a thermodynamic perspective, one can 
consider this manifestation of the external environment in 
terms of energy flows: forcing a cell to change its state 
can be considered as a manifestation of energy flowing 
into the system and influencing it [14]. This similarity 
with thermodynamic systems made us call this kind of 
CA as dissipative cellular automata (DCA), in that the 
DCA consumes external energy to reach a final (regular, 
as shown in the following) configuration.  
Formally a DCA can be considered as: 

 
• A = ( S , d , V , f ); 
• asynchronous dynamics (with uniform 

distribution of rate λa); 
• a perturbation action  ϕ(α,D). 

where A is the quadruple defining a CA, the dynamics is 
the one already discussed in Subsection 3.1, and the 
perturbation action ϕ is a transition function which acts 
concurrently with f and can change the state of any of the 
CA cells to a given state α with some probabilistic 
distribution D, independently of the current state of the 
cells and of their neighbors. Specifically, in our 
experiments with V={0,1}, α=1 and D is a uniform 
distribution of rate λe. 
 

CA Grid 

External “energy”  
influencing cells’ state  

 

Figure 3: Dissipative cellular automata 

3.2. Emergent Behaviors 

The behavior exhibited by DCA is dramatically different 
from both their synchronous and closed asynchronous 
counterparts. In general, when the degree of perturbation 
(determined by λe) is high enough to effectively perturb 
the internal dynamic of the DCA (determined by the rate 
of cell updates λa) but it is still not prevailing over it so as 
to make the behavior of the DCA almost random (which 
happens when λe is comparable λa), peculiar patterns 
emerge. The interested reader can refer to the page 
http://www.agentroup.unimo.it/DCA/ to repeat the 
experiments on-line. 

We have observed that the perturbation on the cells 
induced by the external - while keeping the system out of 
equilibrium and making impossible for it to reach any 
equilibrium situation - makes the DCA develop large 
scale regular spatial structures. Such structures exhibit 
long-range correlation between the state of the cells, 
emerged despite the strictly local and asynchronous 
transition rules, and breaks the spatial symmetry of the 
final state. In addition, such structures are stable, despite 
the continuous perturbing effects of the external 
environment.  

As an example, Figure 4 shows a pattern emerged 
from a DCA, both exhibiting stable macro-level spatial 
structures. For this DCA, the transition rules and the 
neighborhood structure are the same of the CA described 
in Section 2: the presence of global-scale patterns - 
breaking the spatial symmetry of the automata - is 
evident. As another example, Figure 5 shows a typical 
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pattern emerged for a DCA with a neighborhood 
structure made up of 12 neighbors (all cells having a 
maximum distance of 2 from the cell itself) and with the 
following transition rule (RULE B): 

 
f =  {a died cell gets alive iff it has 6 neighbors 

alive; a living cells lives iff it has 3,4,5, or 6 
neighbors alive}  

 
Again it is possible to see large-symmetry breaking 

patterns emerge, extending to a larger scale than the local 
patterns emerging under asynchronous but closed regime 
(Figure 6).  

The phenomenon underlying the behavior of DCA are 
very similar of the ones determining the emergence of 
large-scale structures in dissipative systems [14], e.g., in 
Bénard's cells, where, the temperature gradient between 
the two plates is substituted by the ratio λe /λa. When this 
ratio is small, expressing small perturbations, each 
autonomous component (a DCA cell), acting 
asynchronously accordingly to strictly local rules, tend to 
reach a local equilibrium (or a strictly local dynamics), 
which reflects in a global uniform equilibrium of the 
whole system. When the ratio λe /λa ratio increases, the 
system is kept in a substantial out-of-equilibrium 
situation, resulting in continuous attempt to locally re-
establish equilibrium. This typically ends up with cell 
groups having found new equilibrium states more robust 
with regard to the perturbation (or compatible with it). 
Such stable local patterns start soon dominating and 
influencing the surrounding, in a sort of enforcing 
feedback, until a globally coordinated (i.e., with large 
scale spatial patterns) and stable situation emerges. When 
the degree of perturbation is high enough to avoid local 
stable situations to persist for enough time, they can no 
longer influence the whole systems, and the situation 
becomes turbulent: spatial patterns disappear and the 
DCA dynamics becomes highly disordered. Detailed 
quantitative analysis are in progress 

4. Open Distributed Systems Vs. DCA 

There are three characteristics that are typical of open 
distributed systems (and that are more and more 
characterizing all types of software systems) that are 
reflected in DCA: autonomy of components, locality in 
interactions, situatedness in an open and dynamic 
environment. 

Components of a distributed system are autonomous 
entities [6, 8, 11, 19], in that their execution is not subject 
to a global flow of control. Instead, the execution may 
proceed asynchronously, and the component's state 
transition occur accordingly to local internal timings. 
This is actually what happens, because of the adopted 

dynamics, in DCA: each state transition in a DCA cell is 
driven by an internal clock, which is independent from 
the clock - and the state transitions - of the other DCA 
cells. 

For the sake of scalability and efficiency, distributed 
systems typically execute in a spatially bounded 
distributed domain, and wide-area - inter-organizations - 
interactions are limited as much as possible [6]. In DCA, 
a cell interacts with (that is, can check the state of) only a 
limited number of other cells in its neighborhood.  

 

 

Figure 4: A Behavior evolved in a DCA - RULE A 

 

Figure 5: A behavior evolved in a DCA - RULE B 

 

Figure 6: A stabilized situation in an 
asynchronous closed CA - RULE B 
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Components are situated entities that live dipped in an 
environment, whether a computational one, e.g., a Web 
site, or a physical one, e.g., a room or a manufacturing 
unit to be controlled. The component is typically 
influenced in its execution (i.e., in its state transitions) by 
the events happening in the environment. In this sense, 
distributed systems are "open systems": the global 
evolution of the system may be influenced by the 
environment in which it lives [6, 16]. And, in most of the 
cases, the environment possesses a dynamics that is not 
controllable or foreseeable. For instance, the 
computational resources, the data, the services, as well as 
the other components to be found on a given Web site 
cannot be predicted and they are likely to change in time. 
Analogously, the temperature and lightening condition in 
a room that a component is devoted to control may vary 
dynamically for a number of reasons that cannot be 
predicted. This sort of openness is the same that we can 
find in DCA, where the perturbation of the environment, 
changing the internal state of a cell, can make us consider 
the cell as situated in an environment whose 
characteristics dynamically change in an unpredictable 
way. 

Given the above similarities, and given that the 
characteristics leading to the observed DCA behaviors 
are present in most of today's distributed systems there 
are very good reason to presume that similar strange 
behaviors will be observed as soon as these systems will 
start populating the Internet and our physical 
environments. 

4.1. Defending from Undesired Emergent 
Behaviors 

The reported experiments open up the possibility that a 
distributed system immersed in a open and dynamic 
environment may exhibit behaviors very different from 
the ones it was programmed for. Of course, this is not 
desirable and may cause highly damaging effects [16]. 
For instance, in the case of Internet pricing systems, and 
despite theoretical equilibrium results, environmental 
dynamics can make macro-level spatial patterns emerge, 
leading to great price differences in different sites of the 
planet. In the case of cooperative distributed information 
retrieval, this may cause a large amount of available 
information to be left out from the search, while making 
the remaining part over-accessed.  

Accordingly, we think that a re-thinking of the 
methodologies currently adopted for the design, 
development, and maintenance of open, distributed 
systems is required to avoid such situations to occur, or at 
least to be able to predict and control them. By now, 
software systems are designed in a mechanical way, 

component by component, so as to exhibit a specific, 
deterministic behavior. Such approach immediately fails 
when a large number of autonomous components are 
involved. Modern distributed systems researches 
recognize this problem, and have gone farther, by 
approaching the study of engineering such systems in 
more systemic, macro-level, terms [11]. The next 
challenge is approaching the study of distributed systems 
by making the environment and its dynamics play a 
central role. In other words, one should design a system 
so as to make it exhibit, under a wide range of 
environmental conditions, the desired global behavior, 
disregarding if necessary the full understanding of the 
behavior of its components, and rather trying to 
understand the behavior of the system as a whole 
depending on the environmental conditions. Possibly, a 
software system should be designed so as to be able to re-
adapt itself dynamically and make its internal dynamics 
contrast the environmental one.  

As a consequence of the macro-level approach and of 
the primary role of environmental dynamics, open and 
distributed systems will be no longer tested with the goal 
of finding errors in them (or in their components), but 
they will be rather tested with regard to their capability of 
behaving as needed as a whole, independently of the 
exact behavior of its component, and under the 
environmental conditions in which the system is expected 
to operate when released. It is also important to note that, 
in most of the cases, a newly deployed software system 
will execute in an environment where other systems 
already executes. Thus, the new software system will 
impact on the environmental condition of the pre-existing 
systems and, by executing, on their environmental 
dynamics. Thus, designing and testing a system will not 
only be devoted to make a software system useful, but 
also to guarantee that it will not be dangerous to other 
systems. 

4.2. Exploiting Useful Emergent Behaviors 

Clarifying the dynamic influences between multi-agent 
systems and their environments can make environmental 
dynamics become an additional design dimension, rather 
that an enemy to fight. 

As a very trivial application example, directly 
inspired from the visual appearance of the DCA patterns, 
one could think at "intelligent paintings". Paintings can 
be made up of active, radio-enabled, micro-components, 
able change their colors according to local transition 
rules, and making it possible to change the color patterns 
via simple radio-commands perturbing the transition rules 
and causing a global change in the pattern of a wall. As 
another example, the possibility of making global 
patterns emerge from a system relying on local 
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interactions could be exploited so as to enforce global 
control in a wide-area distributed system with very low 
efforts.  

More generally, one could think at exploiting the 
environmental dynamics to control and influence a open, 
distributed system from "outside the loop" [19], that is, 
without intervening on the system itself. In a world of 
continuous computations, where decentralized software 
systems are always running and cannot be stopped (this is 
already the case for Internet services and for embedded 
sensors) changing, maintaining and updating systems by 
stopping and re-installing them is not the best solution, 
and it could not be always feasible. Instead, given the 
availability of proper models and tools, one could 
envision the possibility of influencing the system without 
stopping it, simply forcing specific environmental 
dynamics changing the global behavior of the system so 
as to make it exhibit the required behavior. 

5. Controlling DCA Behavior  

Form the previous discussion, it turns out that it would be 
of fundamental importance to have the possibility of 
controlling emergent behaviors in DCA. In fact, by 
considering again the relations with distributed 
computing, having the possibility of controlling emergent 
behavior may open up the doors to both defending from 
the emergence of undesirable behaviors and exploiting 
useful behaviors by making them emerge as needed. 

However, due to the characteristics of such systems 
(large number of components, large-scale distribution, 
autonomy of components) one cannot think at imposing 
behavior via direct control on all its components. Instead, 
such control must be as much distributed and 
decentralized as possible, and can rely only on he 
possibility of controlling a few components of the 
systems, without making any assumption on the 
possibility of controlling all components and their 
dynamic interactions. 

To this end, we experienced two complimentary way 
of controlling DCA behaviors, both having lead to 
successful, and rather surprising, results. 

5.1. Rule-based Control 

The rule-based methodology we have experienced 
amount at changing the rules determining state transitions 
in cells. With respect to distributed systems, such rule 
changes would translate in injecting in components of a 
the system (e.g., via mobile code technologies) some new 
working parameters and activities. In the DCA, to make a 
desired pattern emerge, the rule as to change so as to 
make (some of the) cells recognize that the cells in the 
neighborhood are in the right configuration, i.e., in a 

configuration that approaches the configuration that 
would be required for the required pattern to emerge out 
of the DCA evolution.  

Among a variety of possible rule modifications, we 
have found that such rule modification should not be too 
strict, e.g., a cell should lives if and only if its 
neighborhood is in one of the possible configurations that 
would have assumed in the presence of the desired 
pattern. For such strict rules, all cells in the automata 
quickly die. Instead, we have found out that such rules 
modifications have to be very weak and, counter-
intuitively, should enable a cell to get to life and live in a 
wider range of configuration than the unmodified rule 
allow. For instance, given the generic rule: 

 
f =  {a died cell gets alive iff it has between D1 and 

D2 neighbors alive; a living cells lives iff it has 
between  L1 and L2 neighbors alive} 

 
The simple modified rule mf that enables a specific 
pattern to emerge is in the form: 

 
mf =  {rule f OR a cell must live and get alive as soon 

as the there are alive neighbor cells in one of 
the correct configuration w.r.t. the desired 
patterns} 

 
which can re-phrased as follows: a cell must follows the 
normal transition rules, however, independently of that, 
and independently on the number of alive and died cells, 
a cell must get to life whenever in the neighborhood there 
are alive  cells in the right position. 

Applying the mf rule, we have been able to make any 
desired pattern emerge from any initial configuration 
from a DCA, independently of the chosen f rule and 
independently of the dimension of the DCA grid. Of 
course, such configuration emerges only in the presence 
of a correct range of value for the λe /λa ratio. For 
instance, we have been able to make the pattern of Figure 
7 emerge from a DCA by applying the modified rule B, a 
pattern that emerged only very rarely (about 0,01% of the 
cases) in previous experiments. 

Of course, for a control methodology to be applicable 
to large distributed systems, it must not assume the 
capability of influencing the behavior of all the 
components of the system. For this reason, we have tested 
the rule-based methodology also by modifying the rule 
only in a sub-set of the DCA cells. Such experiences have 
been very satisfying, in that the rule-based enables to 
make the desired pattern emerge even when only a very 
low percentage (down to 30%) of the cells applies the 
modified rules. 
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5.2. Generalization-based Control 

The generalization-based methodology starts from 
totally different considerations, and gets its inspiration 
from Hopfield's work on neural networks [9]. It is known 
that Hopfield's networks can generalize a pattern from 
imposition of a partial pattern. Should DCA exhibit such 
generalization property, controlling them would imply 
initializing a localized sub-set of the DCA cells in accord 
to the desired patterns (see Figure 8), and then let the 
DCA evolve by making the global pattern spontaneously 
emerge from the local imposition. In the case of a 
distributed system, such methodology would require the 
possibility of controlling the activities of a local cluster of 
components, and then let this locally imposed control 
diffuse to the whole system. 

 

 

Figure 7. Rule-based methodology: a rare pattern 
whose emergence can be controlled 

 

Figure 8. Generalization-based methodology: a 
local pattern imposed on a portion of a DCA 
grid.  

At the beginning, we were not really convinced of 
DCA possessing such generalization property. Instead, 
rather surprisingly, we found out that, for a few rules we 
have experienced, such methodology worked well: for a 

desired global rule to emerge of a 40x40 DCA grid, we 
had to initialize a local portion of about 20% of the 
global grid size. In the case of a distributed system, this 
means for instance that controlling the initial state of 
cluster of a few hundred components may be enough to 
influence a distributed system of several thousands.  

Further experiments have to be performed to analyze 
in better detail such generalization properties, and to 
quantify their capability of working in larger grids and 
for larger sets of rules.  

 

6. Conclusions and Future Work 

Large-scale spatial patterns, not observed under closed 
regime, emerge in open DCA. Since open distributed 
systems exhibits all of the characteristics of DCA 
(autonomy of components and openness) similar sort of 
structures are likely to make their appearance as soon as 
large systems of this kind will start populating the 
Internet. This requires methodologies, and tools, to 
predict and control emergent behaviors in these systems, 
and enabling to either exploit emergent behaviors as an 
additional design dimension, or to prevent undesirable 
behaviors. 

The experiments reported in this paper – and the two 
methodologies proposed to control emergent behaviors – 
are indeed preliminary. Currently, we are trying to better 
formalize the concepts of "openness" and of 
"perturbation", and to characterize and measure the 
degree of perturbation and the degree of order of the 
emergent patterns. Also, we are trying to define effective 
models for controlling emergent behaviors in open 
distributed systems, with a key focus on mobility of 
components [13]. The main goal is to make our 
experiments more and more approximate the 
characteristics of real systems in mobile scenarios and, 
eventually, to end up with a more realistic simulations. 
Also, it would be definitely of interest to verify how and 
to which extent the observed behaviors of DCA can 
provide useful insights for the understanding of the 
evolution of spatial patterns in biological systems [5, 22]. 
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