
Specification and Verification of Agent
Interaction Using Abductive Reasoning

Federico Chesani1, Marco Gavanelli2, Marco Alberti2, Evelina Lamma2,
Paola Mello1, and Paolo Torroni1

1 DEIS - Dipartimento di Elettronica, Informatica e Sistemistica,
Facoltà di Ingegneria, Università di Bologna,
viale Risorgimento, 2, 40136 – Bologna, Italy

{fchesani, pmello, ptorroni}@deis·unibo·it
2 DI - Dipartimento di Ingegneria,

Facoltà di Ingegneria, Università di Ferrara,
Via Saragat, 1, 44100 – Ferrara, Italy

{marco·gavanelli, marco·alberti, lme}@unife·it

Abstract. Amongst several fundamental aspects in multi-agent systems
design, the definition of the agent interaction space is of the utmost
importance. The specification of the agent interaction has several facets:
syntax, semantics, and compliance verification.

In an open society, heterogenous agents can participate without show-
ing any credentials. Accessing their internals or their knowledge bases is
typically impossible, thus it is impossible to prove a priori that agents
will indeed behave according to the society rules.

Within the SOCS (Societies Of ComputeeS) project, a language based
on abductive semantics has been proposed as a mean to define interac-
tions in open societies. The proposed language allows the designer to
define open, extensible and not over-constrained protocols. Beside the
definition language, a software tool has been developed with the purpose
of verifying at execution time if the agents behave correctly with respect
to the defined protocols.

This paper provides a tutorial overview of the theory and of the tools
the SOCS project provided to design, define and test agent interaction
protocols.

1 Introduction

Multi-Agent Systems (MAS) are recently emerging as a new programming par-
adigm. In the process of designing and developing a MAS, various facets of the
system have to be studied and addressed: the architecture of the various agents,
the interactions amongst the agents, the social organisation, the rules, the roles
of the agents in the society.

According to Davidsson [27], there can be four types of societies:

Closed societies are predefined societies, in which no agent can enter. Only the
designer of the society can create new agents in the society itself.

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 243–264, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

244 F. Chesani et al.

Semi-closed are societies in which agents cannot enter, but they can nominate
or spawn representatives in the society.

Semi-open are societies in which there exists one agent taking the role of gate-
keeper, which receives the requests for entering the society. A potential mem-
ber applies at the gate, can provide some credentials, and can possibly be
admitted in the society by the gatekeeper.

Open are societies in which any agent can enter without restriction.

The classification by Davidsson is based on rules for entering the society,
as this is the most pressing issue. Leaving the society could be done with a
leaving protocol (in semi-open or semi-closed societies), or, in some cases, it can
be considered as a way to punish misbehaving agents: when an agent does not
comply to the rules, it is ejected from the society. Note that there are no given
protocols to abandon an open society: agents may leave at any time without
restrictions.

Clearly, open societies are the most flexible, but can also be very unstable.
The set of members is not fixed, nor even computable in general, as new agents
may join anytime, and current members could leave without any notification.
Also openness à la Davidsson implies heterogeneity: any agent may join, so they
are not required to share concepts such as beliefs, intentions, knowledge bases,
or architectures. Some agents may exhibit powerful reasoning capabilities, while
others may only be able to react to stimuli with predefined patterns. Foreign
agents can join the society without restrictions and profit from interacting with
the agents in the society. On the other hand, malicious agents could enter and
disrupt the harmonious evolution of the society, threatening the usability of the
whole MAS.

Thus, mastering open societies in order to drive them to a coherent, useful
global behaviour is a challenge. The SOCS project accepted this challenge and
provided theory, methods, and tools to raise from anarchy without overrestrict-
ing the agents’ freedom. The goal is to point out unwanted behaviour without
accessing the agent’s mind. The aim is to orchestrate the agents’ actions toward
the user’s goals without obliging agents to follow predefined rails.

A basic requirement for a meaningful society is that there exists a language
of commonly understood utterances in the society. It is not necessary that all
the agents understand the whole language: agents may understand subsets of the
language, depending on the roles they want to play in the society, and on the type
of interactions they want to start. The meaningful sequences of utterances make
up the interaction protocol: agents are supposed to follow such protocols in order
to get a coherent societal evolution. The MAS designer defines such protocols in
a given language. Coherently with the concept of open society, protocols should
be defined not to be over-restrictive, but should only guide the agents towards
a desired behaviour. Note that agents cannot be forced to follow such protocols.
While in non-open societies there are proposals that inspect the agent’s mind
and possibly update it to obtain a desired behaviour [32], in an open society any
agent could join. The agent’s implementation remains unrevealed to the society,

Specification and Verification of Agent Interaction 245

so to change its mind and impose a desired behaviour is unimaginable. Agents,
as well as humans, might not follow the protocol: this is a fact of life. It might
happen due to malicious behaviour, because of erroneous design, because of
ignorance of the society rules, or because of incapability to keep pace with tight
deadlines. But, although unavoidable, protocol violation must not be accepted
supinely, or the system will soon degenerate to chaos.

Of utmost importance is then to check that agents do not violate the pro-
tocols. Such a test cannot be executed in advance in an open society: even if
we knew all the participants, we would still be unable to foresee the behaviour
of members without knowing their implementation and their current (mental)
state. Knowing the internals of the agents is against the concept of open society
and, indeed, against that of multi-agent system research itself. The applicable
check of compliance can be performed on-line: the society does not check before-
hand the implementation of the agents, nor their internal mental states, but can
only observe their external behaviour.

The SOCS project is aimed at developing Multi-Agent Systems for open soci-
eties and addresses two basic issues: it developed a model of a single agent [25],
and a model for the society [10].

In this paper, we give taste of the society model, developed in the three-
year SOCS project. In SOCS, the society model can be defined through a logic
language, evolution of the IFF [34], called SCIFF (Social Constrained IFF). The
SCIFF language can be used to define declaratively the interaction space, i.e.,
both the utterances of the agents and the protocols in the devised society, in a
uniform way.

A corresponding proof-procedure can be used to verify that the agents behave
according to the protocols, and detect possible violations. The SCIFF proof-pro-
cedure is sound and complete with respect to its declarative semantics. Finally,
practical issues have been taken into account, leading to an implementation and
the development of a full-fledged software tool. The tool, called SOCS-SI, runs
the implementation of the SCIFF proof-procedure and it has been developed
and interfaced with popular MAS systems. An intuitive Graphical User Interface
(GUI) lets the user inspect both the history of happened events and the internal
state of the proof-procedure.

This tutorial will not go deeply in the theoretical issues concerning the SCIFF
proof-procedure, but it will provide examples to clarify the concepts, together
with pointers to previous publications, reports, and downloadable software to
let the reader investigate the various facets of the SOCS society model and
experiment with the provided tools.

The rest of the paper is organised as follows. After the introduction of the
necessary background, we define the SCIFF language, with motivating examples
to smoothly learn how to define interaction space and protocols with SCIFF.
We then define the declarative semantics in Section 4, and the SCIFF proof-
procedure, with the SOCS-SI tool in Section 5. Discussion, related work and
conclusions follow.

246 F. Chesani et al.

2 Background

We assume the reader has a basic familiarity with logics and logic programming;
a good introduction is the book by Lloyd [46]. As it will be clear soon, the SCIFF
proof-procedure is based on Abductive Logic Programming and on Constraint
Logic Programming; we introduce the two concepts in an intuitive way, and
provide pointers to the formal parts.

2.1 Abduction

Abduction is a powerful mechanism for hypothetical reasoning in the presence
of incomplete knowledge, that is handled by labelling some pieces of informa-
tion as “abducibles”. Abducibles can be viewed as possible hypotheses which
can be assumed, provided that they are consistent with the current knowledge
base. The abduction process is typically applied when looking for an explanation
about some observation. Starting from some observed facts, possible causes are
hypothesised (they are abduced). Then it is possible to confirm the hypotheses
by performing some additional observation: for example, the scientist postulates
some theory, and then develops new experiments to confirm (or disconfirm) such
theory. Another common application of abduction is diagnosis : the physician,
by observing the symptoms, formulates some alternative hypothesis about the
disease. The physician tries to find more facts by prescribing a patient another
test, that will possibly support a smaller set of explanations. Some of the pre-
viously made hypotheses could be discarded because they are now incompatible
with the new facts, or because some pairs of explanations cannot be assumed at
the same time.

Formally, an abductive logic program (ALP) [40] is a triple 〈P, Ab, IC〉 where:

– P is a (normal) logic program, i.e., a set of clauses of the form
A0 ← A1, . . . , Am, not Am+1, . . . , not Am+n, where m, n ≥ 0, each Ai

(i = 1, . . . , m + n) is an atom, and all variables are implicitly uni-
versally quantified with scope the clause. A0 is called the head and
A1, . . . , Am, not Am+1, . . . , not Am+n is called the body of any such clause;

– Ab is a set of abducible predicates, p, such that p is a predicate in the language
of P which does not occur in the head of any clause of P ;

– IC is a set of integrity constraints, that is, a set of formulae in the language
of P .

Given an abductive logic program 〈P, Ab, IC〉 and a formula G, the goal of
abduction is to find a (possibly minimal) set of ground atoms Δ (the abductive
explanation), with Δ ⊆ Ab, and which, together with P , entails G, and satisfies
IC:

P ∪ Δ |= G (1)
P ∪ Δ |= IC (2)

The notion of entailment |= depends on the semantics associated with the
logic program P .

Specification and Verification of Agent Interaction 247

Several abductive proof procedures can be found in the literature (like the
Kakas-Mancarella [41], limited to ground literals, SLDNFA [28], that can abduce
literals with existentially quantified variables, ACLP [42] and A-system [43], that
integrate constraints, to cite some). The SCIFF proof procedure, upon which
the SOCS-SI application relies (see Section 5) is an extension of the if-and-only-
if (IFF) abuctive proof procedure [34]. The integrity constraints, in the IFF
proof-procedure, are expressed as a set of implications of the form:

B1 ∧ . . . ∧ Bn → A1 ∨ . . . ∨ Am

where all variables are universally quantified, Ai and Bi are atoms (can be
abducibles or defined predicates), but they cannot be the negation of an atom.

2.2 Constraint Logic Programming

Constraint Logic Programming [37, 38] (CLP) is a class of programming lan-
guages that extend logic programming by giving an interpretation to some of
the symbols. In classical Logic Programming, the symbols are not interpreted,
so the term 2+3 does not mean 5, but simply a structure whose functor is +
and whose terms are 2 and 3. Unification performs a syntactical operation, and
does not provide any interpretation, so the term 5 will not unify with the term
3+2, and the goal 5=3+2 simply fails.

In Constraint Logic Programming, a subset of the terms and atoms are given a
standard interpretation: the symbol 5 stands for the number five and the symbol
+ represents the addition operation. Unification is extended, and treated as a
constraint. For example, the goal 5 = A + 3 succeeds in CLP, providing the
answer A = 2. This behaviour is obtained by identifying syntactically the set of
interpreted atoms, called constraints, and inserting them into a constraint store
instead of applying resolution. The constraints in the store are then evaluated
by a constraint solver, that detects possible failures and infers new constraints.

Each language of the CLP class is identified by a domain, representing the set
of values that a variable subject to constraints can assume, the set of constraints,
the set of interpreted symbols. For example, CLP(R) [39] is the instance of CLP
that works on the reals; this means that a variable in CLP(R) can have a real
value, and it can be subject to constraints on the reals. Current implementations
typically employ the simplex algorithm as constraint solver.

CLP(FD) is the specialisation of CLP on the Finite Domains [30]. Variables
are initially assigned a domain through the predicate V ariable :: Domain. For
instance X :: [red, green, blue] states that X can take only the values red, green
or blue. On numeric values, CLP(FD) languages typically interpret the symbols
<, ≤, =, �=, etc., plus the usual operations +, −, ∗, /. In CLP(FD), imposing
constraints typically deletes inconsistent values from the domains of the vari-
ables; for example, if A :: [0..10], B :: [1..5], A < B would remove the values
that cannot satisfy the imposed constraint, in this case the values greater than
4 from the domain of A. When a domain becomes empty, there cannot be an
assignment for the corresponding variable, so the system fails. Various languages

248 F. Chesani et al.

and efficient solvers have been developed [30, 53]. Such languages have been suc-
cessfully used for hard combinatorial problems, such as scheduling [24], planning
[22], bioinformatics [47], and many others. These solvers typically deal only with
problems that contain existentially quantified variables.

3 The SCIFF Language

We will now give the syntax of the SCIFF language, together with examples
to clarify the various components. We first introduce the concept of happened
event, that is the basic link between the society and the agents. Then, we intro-
duce the concept of expectation, that is used to describe the correct evolution
of the society. We define the Social Knowledge Base (Section 3.1) and the So-
cial Integrity Constraints (Section 3.2), that are used to relate happened events
and expected behaviour, and in particular can be used to define the interaction
protocols that are valid in the society.

We will use, as a running example, an auction scenario; we can envisage the
following utterances:

openauction(Item, Type) opens an auction for an Item, specifying the Type
of auction, possibly with its own specific parameters;

bid(Item, Price) propose to buy the Item for the proposed Price;
answer(win/lose, Item, Price) communicate if a bid wins or loses the Item

for the price Price;
deliver(Item) provide the Item;
pay(Item, Price) pay the Price for the Item;

The language for defining the society is based on computational logics, and is
used to:

– Describe the events generated by agents in the society. Happened events are
represented with the atom H(Description, T ime), where Description is a
term describing the type of event, its parameters, etc., and T ime is an inte-
ger identifying the instant in which the event happened in the society. The
collection HAP of all events happened in the society is called the history.

– Define the expected behaviour of agents.
– Relate the current history with the expected behaviour.

The expected behaviour is a conjunction of literals [¬]E(Description, T ime)
and [¬]EN(Description, T ime).

– E(Description, T ime) declares that an event matching with Description is
expected to happen in the given T ime. Note that T ime could be a variable,
possibly subject to CLP constraints, which may restrict the instants in which
the event is expected to happen. This can be useful to express deadlines, time
intervals, scheduling constraints, and any type of constraints existing in the
adopted CLP language (possibly, user-defined). For instance:

E(tell(luke, mark, answer(A, pen, 1), auction1), T), T < 10

Specification and Verification of Agent Interaction 249

could mean that agent Luke is supposed to tell Mark an answer regarding its
bid of 1e for a pen, within time 10, in the context of auction1. Description
can be a term, possibly with variables, which can be possibly constrained. We
often use the term tell(Sender, Receiver, Content, DialogueId) to indicate
communicative acts, however the formalism is open to any type of term. All
the variables occurring in a literal E are existentially quantified: as soon as
an action matching the expectation is performed, the expectation is fulfilled.

– EN(Description, T ime) states that all matching events are violating the
protocol: they are expected not to happen in order to fulfill the correct so-
cial evolution. Again, T ime can be a (possibly constrained) variable and
Description a term involving variables. Variables in EN are universally
quantified (unless they also occur in E literals), expressing that all the match-
ing events are forbidden in a compliant interaction. If a variable is shared
between E and EN, it will be quantified existentially, as in

(∃Auctioneer,Bidder,T1∀T2) E(tell(Auctioneer, Bidder, win, D), T1),
EN(tell(Auctioneer, Bidder, lose, D), T2), T2 > T1

meaning that any auctioneer should tell any bidder that he wins the auction,
and afterwards the same auctioneer should not tell the same bidder that he
loses in the context of the same dialogue.

The current history and the set of current expectations are related through the
rules of the society, that can be defined in the SCIFF language. Such language
consists of a Social Knowledge Base and a set of Social Integrity Constraints,
defined in the following sections.

3.1 The Social Knowledge Base

The Social Knowledge Base represents the pre-built, compile-time knowledge
of the society. It is a set of rules that provide causal consequences of agents’
behaviour. It provides properties that hold in the society when given conditions
are met. For reasons that will be clear soon, the conditions are described by
means of expectations, i.e., atoms describing the expected behaviour of the whole
MAS.

We first give some motivating examples, then give the formal meaning and
the scope rules. We can say that we have full occupation of the agents if none of
them is idle, in any time:

f ull occupation : −EN(idle(Agent), T). (3)

meaning that

f ull occupation ← [∀Agent,T EN(idle(Agent), T)].

We can say that an agent is busy if it is never idle:

busy(Agent) : −EN(idle(Agent), T).

250 F. Chesani et al.

i.e.,
∀Agent busy(Agent) ← [∀T EN(idle(Agent), T)].

An agent in a society could be fairly served if it gets at least one resource
within some given time limit:

f airly(Agent) : −E(get(Agent, R), T), resource(R), T ≤ 10.
resource(printer).
resource(window).
. . .

(4)

where the first clause means:

∀Agent f airly(Agent) ← [∃R,T E(get(Agent, R), T), resource(R), T ≤ 10],

or, equivalently,

∀Agent,T,R f airly(Agent) ← E(get(Agent, R), T), resource(R), T ≤ 10.

Formally, the Social Knowledge base is a set of clauses (i.e., implications in
the form Head ← Body) that can contain, in the body, expectations, literals
or constraints. Variables are all quantified universally with the following scope
rules. Variables that occur only in EN literals and constraints are quantified
universally with the body as scope (this is coherent with the intuitive meaning
of Eq. 3: in order to have full occupation, there should be no agent which is idle
in any time). All other variables are quantified universally with the clause as
scope (as in Eq. 4, in which one resource R is enough).

Note that the given clauses can also be interpreted in an abductive fashion to
derive the expected behaviour given that we want a fair society. Stated otherwise,
there could be a goal of the society (fairness, in this example), and expectations
could be abduced describing the behaviour of the agents in a fair society. Then
expectations could be communicated to the agents in order to guide them to-
wards the desired behaviour. The generated expectations can then be matched
on-line with the history to check if the current evolution of the society indeed
provides the requested feature.

3.2 The Social Integrity Constraints

Social Integrity Constraints are a set of implications that relate the current his-
tory with the expected behaviour. They can involve the various elements in the
SCIFF language, namely happened events, expectations, CLP constraints and
predicates defined in the Social KB. Their syntax is given by the following gram-
mar (where Literal and Term have the usual meaning as in Logic Programming
[46] and Constraint is an atom in the language of constraints [37]):

Specification and Verification of Agent Interaction 251

ICS ::= [icS]�

icS ::= Body → Head
Body ::= (EventLiteral | ExpLiteral) [∧ BodyLiteral]�

BodyLiteral ::= EventLiteral | ExpLiteral | Literal | Constraint
Head ::= HeadDisjunct [∨ HeadDisjunct]� | false

HeadDisjunct ::= ExpLiteral [∧ (ExpLiteral | Constraint)]�

EventLiteral ::= [¬]H(term, T)
ExpLiteral ::= [¬]E(term, T) | [¬]EN(term, T)

Social Integrity Constraints are the perfect tool to define both the semantics
of the basic utterances and the interaction protocol in a uniform way.

Semantics of Communication Acts. When designing the interaction, we
have to define:

– the set of communication acts commonly understood in the society
– the meaning of such communication acts.

Various works propose a semantics for communication acts. One of the most
popular is the FIPA [33] proposal, based on the BDI (Beliefs, Desires, Inten-
tions) model [48]. The semantics of the so-called speech acts is based on the
Beliefs, Desires and Intentions of the agents. For instance, if agent A informs
agent B about X , this means that A wants B to believe X . Intuitively, A is
also implicitly stating that it believes X . Formally, speech acts are modeled in
terms of feasibility conditions and rational effects, expressed through BDI logic
formulas [58].

In open societies, as argued earlier, one cannot access mental states of the
agents, so checking that an utterance is compliant with its semantics is impos-
sible from the society viewpoint. We prefer a semantics based on observable
events in the environment, and, in particular, which actions the agents perform.
Hence, instead of mentalistic approaches, we prefer social approaches. One of
the most successful is the semantics based on commitments [57, 29]; intuitively,
by performing a communicative act, an agent implicitly commits to the truth of
some statement, or to perform some further action. In the SCIFF language, com-
mitments are easily represented through expectations. In the auction example,
with openauction an agent commits to renounce owning an Item in exchange
for money. In the SCIFF language, this means that when the auctioneer opens
an auction, it knows that it will be expected to deliver the item, in case there is
some bid which is declared as winning:

H(tell(A, , openauction(Item,), D), Topen) ∧
H(tell(B, A, bid(Item, Price), D), Tbid) ∧
H(tell(A, B, answer(win, Item, Price), D), Twin)

→ E(tell(A, B, deliver(Item), D), Tdeliv) ∧
Tdeliv < Twin + Tdeliver deadline

(5)

We use the underscore for an unnamed variable (à la Prolog). Note that in an
open society bidders may join the auction without invitation, so it is not impor-
tant that the bidder was also addressee of the openauction message. The winning

252 F. Chesani et al.

bidder might have obtained the information about the auction by another agent,
from a blackboard, or advertisement.

Analogously, the bidder commits to pay in exchange for the item by declaring
its bid:

H(tell(B, A, bid(Item, Price), D), Tbid) ∧
H(tell(A, B, answer(win, Item, Price), D), Twin) ∧
H(tell(A, B, deliver(Item), D), Tdeliv)

→ E(tell(B, A, pay(Item, Price), D), Tpay) ∧
Tpay < Tdeliv + Tpay deadline

(6)

Note that these definitions are independent of the type of auction, which is
defined by the protocol. The concept of expectation is not limited to represent
the semantics of communicative acts, and, in particular, is not limited to express
commitments, as we will see in the following.

Definition of the Protocol. Many works in the literature represent interac-
tion protocols with Finite State Automata (FSA) [21]. The sequence of correct
interaction moves can be interpreted as a phrase in the language recognised by
the FSA. Clearly, FSA can recognise only regular languages, so there is a limit
in the expressivity of the language for defining the protocol. On the other hand,
the simple representation allows for powerful reasoning: proving properties of
a protocol described as a FSA is probably easier than using a more sophisti-
cated language. Model checking techniques, for example, have been used for this
purpose by analysing protocols described as a FSA. Especially in the field of
security protocol analysis, model checking-based techniques have been shown to
be extremely successful [23].

Also, representing protocols as a graph means that every interaction which is
not explicitly represented in the graph is considered non compliant. We believe
that in open societies agents should be as free as possible: free to discuss in
small groups with a language that is not recognised by the society, free to take
shortcuts in long interaction runs (especially in presence of tight deadlines). A
“whitelist” of allowed interaction moves is probably the best solution in the
instance of security protocols; but in general it might be too restrictive.

The SCIFF language gives the user more expressivity in the definition of the
protocol: while in FSA an action can be only required or forbidden, in SCIFF
some actions are required (E), some are forbidden (EN) and all the others are
possible. The possible state of an action provides the agent the freedom degrees
to take shortcuts and to do actions not explicitly considered by the protocol
designer. Uniformly to the semantics of communicative acts, the protocol can
again be defined by means of Social Integrity Constraints.

Various protocols have a common core, which specialise into subtypes in dif-
ferent situations, with different properties. For example, the common concept
of an auction can be implemented in a variety of ways, and in the real world
various flavours of auctions are successfully employed (English, Dutch [54], first-
price sealed bid, Vickrey, reverse, combinatorial [50, 35], just to name a few).
On the other hand, all auction protocols share some core elements. From an

Specification and Verification of Agent Interaction 253

engineering viewpoint, one could first try to define the common core, then refine
the general protocol to obtain the desired specific features.

In the auction scenario, we can write rules that hold for all types of auctions,
such as:

Before placing bids, there must have been an OpenAuction

H(tell(B, A, bid(Item, Price), D), Tbid)
→ E(tell(A, , openauction(Item,), D), Topen)

∧ Topen < Tbid

(7)

The auctioneer should reply to all bids

H(tell(A, , openauction(Item,), D), Topen) ∧
H(tell(B, A, bid(Item, Price), D), Tbid)

→ E(tell(A, B, answer(Answer, Item, Price), D), Tanswer) ∧
Answer :: [win, lose]

(8)

The auctioneer should not give contradicting answers

H(tell(A, B, answer(Answer1, Item, Price), D), T1)
→ EN(tell(A, B, answer(Answer2, Item, Price), D), T2) ∧

Answer1 �= Answer2

(9)

Other rules specify the type of auction. One of the most used is the English
auction. In an English auction, bids are increasing in value: a first bidder declares
publicly its bid, then other bids can be placed, of increasing value. When no more
bids are placed, the good is assigned to the last bid (which is also the highest).
In order to decide that no other bids will occur, there exists a timeout τ : in
human auctions, after each bid the auctioneer counts typically up to three and
then declares the item sold.

The previous core of auction protocols can be easily specialised to the English
auction instance by adding more Social Integrity Constraints, which refine the
general auction protocol schema. In an English auction bids are in increasing
order, so bidders should not place a bid which is lower than the previous ones:

H(tell(A, , openauction(Item, english(τ)), D), Topen)∧
H(tell(Bidder1, A, bid(Item, Price1), D), T1)

→ EN(tell(Bidder2, A, bid(Item, Price2), D), T2) ∧
T2 > T1 ∧ Price2 ≤ Price1

(10)

After a bid has been placed, the auctioneer waits for τ time units; either a better
bid is placed within this time, or the auctioneer should declare the last bid as
winning:

H(tell(A, , openauction(Item, english(τ)), D), Topen) ∧
H(tell(B1, A, bid(Item, Price1), D), T1)

→ E(tell(B2, A, bid(Item, Price2), D), T2) ∧
Price2 > Price1 ∧ T2 < T1 + τ

∨ E(tell(A, B1, answer(win, Item, Price1), D), Twin) ∧
Twin = T1 + τ

(11)

254 F. Chesani et al.

It is well known that the English auction protocol might not terminate, so
if there is a deadline, other auction protocols are used. The Dutch auction is
used when the goods must be sold quickly. The Dutch auction follows a protocol
which is nearly opposite to the English: the proposals are from the auctioneer,
and they decrease in time. The auctioneer starts proposing a (very high) price.
If one bidder accepts it, it wins the auction. If, within τ time units, no bidder
replies, the auctioneer proposes a lower price.

In this case, we can exchange the order of the primitives answer and bid. The
two utterances retain their meaning: answer(win, Item, Price) still means that
a bid for the Item and with the given Price wins, while bid(Item, Price) means
that the bidder would pay the Price for the Item. While retaining the original
meaning, we can change the protocol: first the auctioneer declares a possible
winning price, then the bidders place their bids.

Again, we refine the generic auction given by the semantics of the communica-
tion acts (5-6) together with the auction core (7-9) adding more Social Integrity
Constraints specific for the Dutch auction.

In the Dutch auction, we must ensure that only one (valid) bid is placed; after
the first bid is placed all other bids are illegal:

H(tell(A, , openauction(Item, dutch(τ)), D), Topen) ∧
H(tell(A, , answer(win, Item, Price), D), Ta)∧
H(tell(B1, A, bid(Item, Price), D), T1)

→ EN(tell(, , bid(Item,), D), T2) ∧ T2 > T1

(12)

Moreover, either a bid has been placed within τ time units, or the auctioneer
should propose a new (lower) price:

H(tell(A, , openauction(Item, dutch(τ)), D), Topen) ∧
H(tell(A, , answer(win, Item, Pricei), D), Ti)

→ E(tell(B, A, bid(Item, Price), D), Tbid) ∧ Tbid < Ti + τ
∨ E(tell(A, , answer(win, Item, Pricei+1), D), Ti+1) ∧

Ti+1 = Ti + τ ∧ Pricei+1 < Pricei

(13)

Note that in this way the protocol is not overconstrained by a fixed sequence
of communicative acts. Many freedom degrees are left to the agents, that may
exploit them to converge faster to an agreement. For example, the auctioneer
may start with a high price, bidders place their bids even if they do not match
the price proposed by the auctioneer, and the auctioneer could choose one of
them. Infinitely many hybrid auctions flavours could arise in an interaction. Of
course, if this is not the intended meaning, and avoiding this double negotiation
is necessary, the designer can refine the specification by adding more Social
Integrity Constraints to avoid unwanted paths: in the time interval between two
answers, bidders can bid only the proposed price, i.e., they cannot bid other
prices:

H(tell(A, , openauction(Item, dutch(τ)), D), Topen) ∧
H(tell(A, , answer(win, Item, Pricei), D), Ti)

→ EN(tell(B, A, bid(Item, Price), D), Tbid) ∧
Price �= Pricei ∧ Ti < Tbid < Ti + τ

(14)

Specification and Verification of Agent Interaction 255

In this way, the bidders can place only bids whose prices match the prices
proposed by the auctioneer.

4 Declarative Semantics

The SOCS social model is interpreted in terms of an Abductive Logic Program
(ALP). The idea is to exploit abduction for defining expected behaviour of the
agents inhabiting the society, and an abductive proof-procedure to dynamically
generate the expectations and perform the compliance check.

Classical abduction does not contemplate changes in the knowledge bases,
while in a society the set of happened events dynamically grows. For this reason,
we give abductive semantics to a society by associating an ALP to each possible
history. We call society instance the grounding of a society on a given history:

Definition 1. An instance SHAP of a society S is represented as an ALP, i.e.,
a triple 〈P, Ab, ICS〉 where:

– P is the Social Knowledge Base (SOKB) of S together with the history of
happened events HAP;

– Ab is the set of abducible predicates, namely E, EN, ¬E, ¬EN;
– ICS are the social integrity constraints of S.

We give semantics to a society instance by defining those sets EXP (Δ in the
abductive framework) of expectations which, together with the society’s knowl-
edge base and the happened events, imply an instance of the goal - if any - and
satisfy the integrity constraints. Equations 1 and 2 can be rewritten as:

SOKB ∪ HAP ∪ EXP |= G (15)
SOKB ∪ HAP ∪ EXP |= ICS (16)

Moreover, we require the set EXP to be also

¬-consistent: for any p, EXP cannot include {E(p), ¬E(p)} or {EN(p), ¬EN(p)}
(which implements explicit negation), and

E-consistent: for any p, EXP cannot include {E(p),EN(p)} (an event cannot
be both expected to happen and expected not to happen);

At this point it is possible to define the concepts of fulfillment and violation
of a set EXP of social expectations. Fulfillment requires all the E expectations
to have a matching happened event, and all EN expectations not to have a
matching H event in the history:

Definition 2. Given a society instance SHAP, a set of social expectations EXP
that is ¬−consistent and E−consistent, is fulfilled if and only if for all (ground)
terms p:

HAP ∪ EXP ∪ {E(p) → H(p)} ∪ {EN(p) → ¬H(p)} �|= false (17)

256 F. Chesani et al.

Symmetrically, we define violation as follows:

Definition 3. Given a society instance SHAP, a set of social expectations EXP
is violated if and only if there exists a (ground) term p such that:

HAP ∪ EXP ∪ {E(p) → H(p)} ∪ {EN(p) → ¬H(p)} |= false (18)

5 The SOCS-SI Tool for Compliance Checking

The SOCS-SI (SOCS-Society Infrastructure) application check the compliance
of a given agent interaction with a given protocol definition. It uses the SCIFF
proof-procedure to perform the abductive reasoning, and it provides integration
with multi-agent platforms. The SCIFF is the logical “engine”: by performing
the abduction process, it generates the expectations (represented as abducibles)
and verifies if they are fulfilled or violated.

While the SOCS-SI software heavily relies on the SCIFF proof-procedure,
this can be used instead as a stand-alone application. In fact, SCIFF is a stand-
alone abductive proof-procedure, that has been exploited for agent interaction
compliance checking, but that can be used also to perform general abductive
reasoning.

5.1 The SCIFF Proof-Procedure

The operational semantics of the SCIFF language is an abductive proof-proce-
dure, i.e., it computes the set Δ introduced in Section 2.1. It is an extension of
the IFF proof-procedure, but it also provides the following additional features:

– abduces atoms with variables universally quantified;
– deals with CLP constraints, also imposed as quantifier restrictions on uni-

versally quantified variables;
– is more dynamic, in fact new events may arrive, and the proof-procedure

dynamically takes them into consideration in the knowledge base;
– has the new concepts, related to on-line verification, of fulfillment and vio-

lation.

As its ancestor IFF, the SCIFF is a transition system that rewrites logic
formulae into equivalent logic formulae. Each formula is a Node of the proof-
tree, and it can be rewritten by one of the transitions into one or more nodes,
logically in disjunction (so building an or-tree). The elements in a node are
arranged as follows:

N ≡ 〈R, CS, PSIC,PEXP,HAP,FULF,VIOL〉 (19)

where R is the resolvent, CS is the constraint store (as in CLP), PSIC is a set
of implications (initially the set of all integrity constraints), HAP is the current
history, PEXP, FULF, and VIOL are, respectively, the set of pending, fulfilled,

Specification and Verification of Agent Interaction 257

and violated expectations. Reporting the transitions of the SCIFF proof-proce-
dure is beyond the scope of this paper, but the interested reader can refer to
previous publications for more details [13].

SCIFF has been implemented in SICStus Prolog [53], exploiting its CHR li-
brary for defining the rewriting rules, and its CLP(FD) engine (suitably extended
to deal with universally quantified variables) as underlying constraint solver.

5.2 The SOCS-SI Tool

SOCS-SI is a software tool that uses the SCIFF proof procedure to check if
an agent interaction is compliant with a given protocol definition. It is a full-
fledged system, able to interface with multi-agent system like JADE [36] and
PROSOCS [55], as well as the standard e-mail system (to verify interactions
happening between human agents), and simple text files containing the log of
the interaction. It provides a Graphic User Interface (GUI), that allows the user
to observe the interaction in the form of the exchanged messages, to view the
list of participants to the interaction, and to inspect the set of expectations
generated by the proof-procedure: this set represents the expected behaviour at
the society level.

Through SOCS-SI, it is possible to access a tree-view of the computation of
the SCIFF proof-procedure (Figure 1); interestingly, the shown tree bears both
an operational and a logical interpretation. The operational interpretation is
an intuitive graphical form of a log-file, showing the most significant computa-
tional steps, useful for debugging purposes. The logical meaning is an or-tree
(the branches of the tree are connected by logical disjunction) of the possible
derivations timed by the incoming events. For each incoming event that enriches
the knowledge base, the frontier of the explored proof-tree (which is a logical
disjunction) is shown. The user can inspect each of the nodes, and see in the
main window the state of the computation, i.e., the tuple given in Eq. 19.

SOCS-SI takes as input three types of information:

– The source of events, i.e. the multi agent system that is going to be observed.
– A file containing the Social Knowledge Base, as specified in Section 3.1.
– One or more files containing the specification of the protocol by means of

Social Integrity Constraints (as discussed in Section 3.2).

SOCS-SI can be easily extended to support other multi-agent platforms, by
simply adding interface modules, and selecting them as event sources. More
details on SOCS-SI, on the output it generates and how to support new agent
platforms can be found in [8].

SOCS-SI can be used at both design-time and run-time. The protocol designer
can use SOCS-SI to support the development of a correct protocol: once this has
been defined using the SCIFF language, it is possible to check if the protocol does
indeed allow only the desired interactions, and it excludes the wrong ones. Agent
dialogues can be simulated by specifying on a log file the exchanged messages,
and SOCS-SI can check the compliance of these interactions w.r.t. the protocol
specification. Moreover, SOCS-SI provides a detailed view of the expectations

258 F. Chesani et al.

Fig. 1. The Logic or-Tree

generated at every step of the interaction and, in case of violations, indicates
also the set of the possible causes.

Thanks to its integration with various agent platforms, SOCS-SI can be used
at runtime to detect violations to the society protocols: in such cases proper
measures can be taken against the culprit (e.g. excluding the culprit agent from
the society).

6 Discussion

A number of papers describe in detail various aspects of the SCIFF proof-proce-
dure; the details cannot be given here because of lack of space. In previous pub-
lications, the interested reader can find the definition of the general framework
[15, 11, 10, 9], language and declarative semantics [14], the operational semantics
[12, 13], and the implementation [8, 6]. The proofs of soundness, completeness and
termination of the SCIFF proof-procedure can be downloaded from the SCIFF
web page [51]. The concept of expectation, developed in the SOCS project, has
been compared with that of obligation of deontic logic [17].

A plethora of different protocols has been tested with SCIFF and SOCS-SI,
including various flavours of auctions (English, First Price Sealed Bid, Combina-
torial Auctions [5]), resource sharing [16], e-commerce protocols (NetBill [15]),

Specification and Verification of Agent Interaction 259

high level protocols (FIPA) and low-level ones (TCP/IP). The proof-procedure
and the SOCS-SI application have been tested thoroughly; the systems have
been subject to stress testing, varying the number of interacting agents and the
exchanged messages [3].

SOCS-SI and SCIFF can be downloaded from the web [1, 51].

7 Related Work

Opposite to mentalistic approaches [58], that give semantics to communication
through the mental states of the agents, social approaches propose to focus on
observable acts [57, 29]. The works on SCIFF and SOCS-SI take the second view,
and indeed belongs to such research stream. While other works [57] are based on
temporal logics, we adopted a constraint solver, that is able to efficiently deal
with scheduling constraints and to express a variety of real-life concepts, such
as deadlines.

The idea of expected behaviour can be considered related to deontic logic
[59]; however, our claim is that we do not need the full power of the standard
deontic logic, but only constraints on events that are expected to happen or
not to happen. We do not use deontic operators, but instead we map them into
predicates (E for positive and EN for negative expectations).

Our work is very close for the objective and methodology to the notable
work on computational societies presented and developed in the context of the
ALFEBIITE project [18], and the work by Singh [60] where a social semantics
is exemplified by using a commitment-based approach. With this work we share
the same view of an open society as that of [20].

Artikis et al. [20] present a theoretical framework for providing executable
specifications of particular kinds of multi-agent systems, called open computa-
tional societies, and present a formal framework for specifying, animating and
ultimately reasoning about and verifying the properties of open computational
societies: systems where the behaviour of the members and their interactions
cannot be predicted in advance. Differently from [20], we do not explicitly rep-
resent the institutional power of the members and the concept of valid action.
Permitted are all social events that do not determine a violation, i.e., all events
that are not explicitly forbidden are allowed, and this implements a sort of “open
world assumption” at a society level. Permission, when it needs to be explicitly
expressed, is mapped into the negation of a negative expectation: ¬EN(. . .).

The semantics of our model can be directly mapped in an abductive frame-
work, where expectations can be confirmed (fulfilled) or disconfirmed (violated)
by the history of the happened social events.

Sadri et al. [49] propose a framework for agent negotiation based on dialogue.
The dialogue of agents is defined in a two-part setting as an ordered sequence of
communication primitives. The generation of dialogues results from an abductive
reasoning process taking place inside each agent during the think phase of its life
cycle (the cycle being inspired by [44]). Our work shares the view of integrity
constraints that provide new abducible atoms, but in our case the abducibles

260 F. Chesani et al.

are expectations of the society about the future behavior of the agents, while in
[49] they are used as communication primitives.

Many abductive proof procedures have been proposed in the past; the reader
can refer to the exhaustive survey by Kakas et al. [40]. The SCIFF proof-proce-
dure is mostly related to the IFF [34], which it extends in several directions, as
explained in the paper.

Other proof procedures deal with constraints; in particular ACLP [42] and the
A-system [43] deeply focus on efficiency issues. Both use integrity constraints in
the form of denials, instead of forward rules, and both only abduce existentially
quantified atoms, which makes the SCIFF in this sense more expressive.

The integration of the IFF with constraints has been explored, both theoreti-
cally [45], and in an implementation [31]. These works, however, do not deal with
confirmation of hypotheses and universally quantified variables in abducibles.

Abdual [19] is a system for performing abduction from extended logic pro-
grams plus constraints adopting the well-founded semantics, but also capturing
2-valued generalized stable models. It handles only ground negated literals, and
it relies on tabled evaluation.

8 Conclusions and Future Work

In this paper, we presented a tutorial overview of the methods and tools the
SOCS project provided for defining the interaction space in an agent society.
The reader interested in the theory can find the foundations of the SCIFF lan-
guage and proof-procedure in the given references. The practitioner interested
in applying the tools can download the implementation of the proof-procedure
and apply it to the check of compliance of interaction protocols, or to general
abductive tasks. The SOCS-SI tool can be easily adapted to interact with popu-
lar multi agent systems, or with human communication tools, such as the e-mail
exchange.

Current work follows multiple threads. A first thread is aimed at applying the
developed tools to new applications, beside the check of compliance to proto-
cols. Experiments are currently conducted in planning with the abductive event
calculus [52], a classical application of abductive proof-procedures. Other ap-
plications involve checking protocols in other environments besides agents, like
giving medical guidelines [4].

A second thread focuses on the evolution and optimisation of the proof-pro-
cedure. The aim is to reduce the branching factor of the SCIFF proof-procedure
by identifying a priori branches that will fail and whose exploration can be
skipped. This goal could be obtained through powerful constraint propagation,
or by encapsulating knowledge given by the experienced user on the application
domain.

The third thread widens the properties the SCIFF proof-procedure is able to
prove. Besides on-line protocol conformance, the SCIFF proof-procedure could
also prove properties a-priori, by considering as input only the protocol (and not
the history). The software engineering task of developing new protocols could

Specification and Verification of Agent Interaction 261

be assisted by a tool that proves properties of the protocol. Such an approach
has been widely used for detecting flawedness of security protocols [23]. Our
aim is to extend the SCIFF proof-procedure to also prove protocol properties,
given as negated goals. The proof-procedure could find counterexamples if the
proposed property is not entailed by the protocol definition, similarly to model
checking in security protocols. The first experiments are very encouraging, as
the SCIFF proof-procedure was able to find attacks of flawed security protocols
[7], although we believe that SCIFF is better suited to prove properties of other
protocols, such as e-commerce ones.

Finally, extensions of the framework could be considered, like communicating
the expectations to the agents, or advertising to possible members the rules
that should be followed in the society. Such rules would implicitly provide the
accepted common language understood in the society.

References

1. SOCS-SI. http://lia.deis.unibo.it/Research/socs_si/.
2. C. Priami and P. Quaglia, editors, Global Computing: IST/FET International

Workshop, volume 3267 of LNAI. Springer-Verlag, 2005.
3. M. Alberti and F. Chesani. The computational behaviour of the SCIFF abductive

proof procedure and the SOCS-SI system. Intelligenza Artificiale, II(3):45–51,
2005.

4. M. Alberti, F. Chesani, A. Ciampolini, P. Mello, M. Montali, S. Storari, and P. Tor-
roni. Protocol specification and verification by using computational logic. In In
Proceedings of Workshop dagli Oggetti agli Agenti (WOA’05), November 2005.

5. M. Alberti, F. Chesani, M. Gavanelli, A. Guerri, E. Lamma, P. Mello, and P. Tor-
roni. Expressing interaction in combinatorial auction through social integrity con-
straints. Intelligenza Artificiale, II(1):22–29, 2005.

6. M. Alberti, F. Chesani, M. Gavanelli, and E. Lamma. The CHR-based imple-
mentation of a system for generation and confirmation of hypotheses. In A. Wolf,
T. Frühwirth, and M. Meister, editors, 19th Workshop on (Constraint) Logic Pro-
gramming, pages 111–122, University of Ulm, Germany, 2005.

7. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Se-
curity protocols verification in abductive logic programming: a case study. In
O. Dikenelli, M.P. Gleizes, and A. Ricci, editors, Proceedings of ESAW’05, LNAI.
Springer Verlag. to appear.

8. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Com-
pliance verification of agent interaction: a logic-based tool. In Trappl [56], pages
570–575. Extended version to appear in Applied Artificial Intelligence.

9. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. A logic
based approach to interaction design in open multi-agent systems. In Proceedings
of WETICE-2004, pages 387–392. IEEE Press, June 14–16 2004.

10. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. The
SOCS computational logic approach for the specification and verification of agent
societies. In Priami and Quaglia [2], pages 324–339.

11. M. Alberti, A. Ciampolini, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni.
A social ACL semantics by deontic constraints. In V. Mar̆́ık, J. Müller, and
M. Pĕchouc̆ek, editors, CEEMAS 2003, volume 2691 of LNAI, pages 204–213.
Springer-Verlag, 2003.

http://lia.deis.unibo.it/Research/socs_si/

262 F. Chesani et al.

12. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Abduction with
hypotheses confirmation. In F. Giunchiglia, editor, IJCAI-05, pages 1545–1546.

13. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. The SCIFF abduc-
tive proof-procedure. In S. Bandini and S. Manzoni, editors, AI*IA 2005, volume
3673 of LNAI, pages 135–147. Springer Verlag.

14. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. An Abductive
Interpretation for Open Societies. In A. Cappelli and F. Turini, editors, AI*IA
2003, volume 2829 of LNAI, pages 287–299. Springer-Verlag, 2003.

15. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Specification and
verification of agent interactions using social integrity constraints. Electronic Notes
in Theoretical Computer Science, 85(2), 2003.

16. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Modeling inter-
actions using Social Integrity Constraints: A resource sharing case study. In J.A.
Leite, A. Omicini, L. Sterling, and P. Torroni, editors, Declarative Agent Languages
and Technologies, volume 2990 of LNAI, pages 243–262. Springer-Verlag, 2004.

17. M. Alberti, E. Lamma, M. Gavanelli, P. Mello, G. Sartor, and P. Torroni. Mapping
deontic operators to abductive expectations. Computational and Mathematical
Organization Theory. To appear.

18. ALFEBIITE: A Logical Framework for Ethical Behaviour between Infohabitants
in the Information Trading Economy of the universal information ecosystem. IST-
1999-10298, 1999. Home Page: http://www.iis.ee.ic.ac.uk/∼alfebiite/.

19. J. Alferes, L. M. Pereira, and T. Swift. Abduction in well-founded semantics and
generalized stable models via tabled dual programs. Theory and Practice of Logic
Programming, 4:383–428, July 2004.

20. A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational soci-
eties. In Castelfranchi and Lewis Johnson [26], pages 1053–1061.

21. M. Barbuceanu and M.S. Fox. Cool: A language for describing coordination in
multi-agent systems. In V. Lesser, editor, Proceedings of the First Intl. Conference
on Multi-Agent Systems, pages 17–25. AAAI Press/The MIT Press, 1995.

22. R. Barruffi, M. Milano, and R. Montanari. Planning for security management.
IEEE Intelligent Systems, 16(1):74–80, 2001.

23. D. Basin, S. Mödersheim, and L. Viganò. An on-the-fly model-checker for security
protocol analysis. In E. Snekkenes and D. Gollmann, editors, Computer Security -
ESORICS 2003, volume 2808 of LNCS, pages 253–270. Springer-Verlag, 2003.

24. F. Bosi and M. Milano. Enhancing CLP branch and bound techniques for schedul-
ing problems. Software Practice & Experience, 31(1):17–42, 2001.

25. A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. Mancarella, F. Sadri,
K. Stathis, F. Toni, and G. Terreni. The KGP model of agency: Computational
model and prototype implementation. In Priami and Quaglia [2], pages 340–367.

26. C. Castelfranchi and W. Lewis Johnson, editors. Proceedings of the First Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-
2002), Bologna, Italy, 2002. ACM Press.

27. P. Davidsson. Categories of artificial societies. In A. Omicini, P. Petta, and
R. Tolksdorf, editors, Engineering Societies in the Agents World II, volume 2203
of LNAI, pages 1–9. Springer-Verlag, 2001.

28. M. Denecker and D. De Schreye. SLDNFA: an abductive procedure for abductive
logic programs. Journal of Logic Programming, 34(2):111–167, 1998.

29. V. Dignum, J. J. Meyer, and H. Weigand. Towards an organizational model for
agent societies using contracts. In Castelfranchi and Lewis Johnson [26], pages
694–695.

Specification and Verification of Agent Interaction 263

30. M. Dincbas, P. van Hentenryck, H. Simonis, and A. Aggoun. The constraint logic
programming language CHIP. In Proceedings of the 2nd International Conference
on 5th Generation Computer Systems, pages 693–702, Tokyo, Japan, 1988.

31. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The CIFF proof
procedure for abductive logic programming with constraints. In J.J. Alferes and
J.A. Leite, editors, JELIA 2004, volume 3229 of LNAI, pages 31–43. Springer-
Verlag.

32. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-based
agents. In G. Gottlob and T. Walsh, editors, IJCAI-03. Morgan Kaufmann.

33. FIPA: Foundation for Intelligent Physical Agents. http://www.fipa.org/.
34. T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic

programming. Journal of Logic Programming, 33(2):151–165, November 1997.
35. A. Guerri and M. Milano. Exploring CP-IP based techniques for the bid evaluation

in combinatorial auctions. In F. Rossi, editor, Principles and Practice of Constraint
Programming - CP 2003, volume 2833 of LNCS, pages 863–867. Springer-Verlag.

36. Java Agent DEvelopment framework. http://sharon.cselt.it/projects/jade/.
37. J. Jaffar and M.J. Maher. Constraint logic programming: a survey. Journal of

Logic Programming, 19-20:503–582, 1994.
38. J. Jaffar, M.J. Maher, K. Marriott, and P.J. Stuckey. The semantics of constraint

logic programs. Journal of Logic Programming, 37(1-3):1–46, 1998.
39. J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The CLP(R) language and

system. ACM Transactions on Programming Languages and Systems, 14(3):339–
395, 1992.

40. A.C. Kakas, R.A. Kowalski, and F. Toni. The role of abduction in logic program-
ming. In D.M. Gabbay, C.J. Hogger, and J.A. Robinson, editors, Handbook of Logic
in Artificial Intelligence and Logic Programming, volume 5, pages 235–324. Oxford
University Press, 1998.

41. A.C. Kakas and P. Mancarella. On the relation between Truth Maintenance and
Abduction. In T. Fukumura, editor, Proceedings of PRICAI-90, pages 438–443.
Ohmsha Ltd., 1990.

42. A.C. Kakas, A. Michael, and C. Mourlas. ACLP: Abductive Constraint Logic
Programming. Journal of Logic Programming, 44(1-3):129–177, July 2000.

43. A.C. Kakas, B. van Nuffelen, and M. Denecker. A-System: Problem solving through
abduction. In B. Nebel, editor, IJCAI-01, pages 591–596, Seattle, Washington,
USA, August 2001. Morgan Kaufmann.

44. R.A. Kowalski and F. Sadri. From logic programming towards multi-agent systems.
Annals of Mathematics and Artificial Intelligence, 25(3/4):391–419, 1999.

45. R.A. Kowalski, F. Toni, and G. Wetzel. Executing suspended logic programs.
Fundamenta Informaticae, 34:203–224, 1998.

46. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd extended
edition, 1987.

47. A. Dal Palù, A. Dovier, and E. Pontelli. Heuristics, optimizations, and parallelism
for protein structure prediction in CLP(FD). In P. Barahona and A.P. Felty,
editors, Proc. of Principles and Practice of Declarative Programming, pages 230–
241. ACM, 2005.

48. A. Rao and M. Georgeff. An abstract architecture for rational agents. In C. Rich,
W. Swartout, and B. Nebel, editors, Proceedings of KR’92, pages 439–449, 1992.

49. F. Sadri, F. Toni, and P. Torroni. An abductive logic programming architecture for
negotiating agents. In S. Greco and N. Leone, editors, Proceedings of JELIA’02,
volume 2424 of LNCS, pages 419–431. Springer-Verlag, September 2002.

http://www.fipa.org/
http://sharon.cselt.it/projects/jade/

264 F. Chesani et al.

50. T. Sandholm. Algorithm for optimal winner determination in combinatorial auc-
tion. Artificial Intelligence, 135(1-2):1–54, 2002.

51. The SCIFF abductive proof procedure.
http://lia.deis.unibo.it/Research/sciff/.

52. M. Shanahan. The event calculus explained. In M. Wooldridge and M.M. Veloso,
editors, Artificial Intelligence Today: Recent Trends and Developments, volume
1600 of LNCS, pages 409–430. Springer, 1999.

53. SICStus prolog user manual, release 3.11.0, 2003. http://www.sics.se/sicstus/.
54. C. Sierra and P. Noriega. Agent-mediated interaction. From auctions to negotiation

and argumentation. In M. d’Inverno, M. Luck, M. Fisher, and C. Preist, editors,
Foundations and Applications of Multi-Agent Systems, volume 2403 of LNCS, pages
27–48. Springer-Verlag, 2002.

55. K. Stathis, A.C. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali.
PROSOCS: a platform for programming software agents in computational logic.
In Trappl [56], pages 523–528. Extended version to appear in Applied Artificial
Intelligence.

56. R. Trappl, editor. Proceedings of the 17th European Meeting on Cybernetics and
Systems Research, Symposium AT2AI-4. Vienna, Austria, April 13-16 2004.

57. M. Venkatraman and M.P. Singh. Verifying compliance with commitment proto-
cols. Autonomous Agents and Multi-Agent Systems, 2(3):217–236, 1999.

58. M. Wooldridge. Introduction to Multi-Agent Systems. John Wiley & Sons, Ltd.,
2002.

59. G.H. Wright. Deontic logic. Mind, 60:1–15, 1951.
60. P. Yolum and M.P. Singh. Flexible protocol specification and execution: applying

event calculus planning using commitments. In Castelfranchi and Lewis Johnson
[26], pages 527–534.

http://lia.deis.unibo.it/Research/sciff/
http://www.sics.se/sicstus/

	Introduction
	Background
	Abduction
	Constraint Logic Programming

	The SCIFF Language
	The Social Knowledge Base
	The Social Integrity Constraints

	Declarative Semantics
	The $SOCS-SI$ Tool for Compliance Checking
	The SCIFF Proof-Procedure
	The SOCS-SI Tool

	Discussion
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

