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Abstract. In this paper, we present theSCIFF platform for multi-agent systems.
The platform is based on Abductive Logic Programming, with a uniform lan-
guage for specifying agent policies and interaction protocols. A significant ad-
vantage of the computational logic foundation of theSCIFF framework is that
the declarative specifications of agent policies and interaction protocols can be
used directly, at runtime, as the programs for the agent instances and for the ver-
ification of compliance.
We also provide a definition of conformance of an agent policy to an interaction
protocol (i.e., a property that guarantees that an agent will comply to a given
protocol) and a operational procedure to test conformance.

1 Introduction

In the last few years, the multi agent paradigm has been proposed as an effective concep-
tual and technological tool for enhancing and automating interaction between humans
in areas such as workflow management and electronic commerce.

However, in order for the users to be willing to delegate critical functions to software
agents, it is necessary for the agent technology to be highly reliable.

Of course, users’ trust will be much higher if the reliability of Multi-agent Systems
(also MAS in the following) is not only demonstrated by running systems, but also
proved formally, by expressing and proving formal properties of a MAS.

The properties of a MAS that can be expressed and proved obviously depend on the
amount of information that is available about the MAS and the agents that compose it.

Guerin and Pitt [1] distinguish three possible types of verification, depending on the
available information:

– Type 1: verify that an agent will always comply;
– Type 2: verify compliance by observation;
– Type 3: verify protocol properties.

Type 1verification can be performed at design time. Given a representation of the
agent, by means of some proof technique (such asmodel checking[2]) it proves that the
agent will always exhibit the desired behaviour.

Type 2verification can be performed at runtime. It checks that theactual agent
behaviour being observed is compliant to some specification. It does not require any
knowledge about the agent internals, but only the observability of the agent behaviour.
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Type 3verification can be performed at design time. It proves that some property
will hold in the society, provided that the agents follow the interaction protocols (i.e.,
behave accordingly to the interaction specification).

In previous work, we focused on Type 2 and 3: for Type 2 verification, we developed
theSCIFF abductive framework and proof procedure [3], and we integrated it into the
SOCS-SI system [4]; for Type 3 verification, we developed the g-SCIFF extension of
SCIFF[5].

In this paper, we present theSCIFF agent platform, and we tackle Type 1 verifica-
tion. For this type of verification, a representation of the agent internal policy is neces-
sary. We developed an agent model, inspired by that proposed by Kowalski and Sadri
[6] where the agent internal policies are expressed by means of the same formalism (the
SCIFF language) that we use for specifying interaction protocols. This choice, besides
letting us exploit theSCIFF operational machinery to implement agent systems, as we
show in this paper, also makes it simpler to express and verify that an agent will be
compliant to an interaction protocol.

The paper is structured as follows. In Sect. 2, we introduce theSCIFF agent plat-
form architecture, and the language that can be used for specifying agent policies and
interaction protocols. In Sect. 3, we give a definition of conformance, and propose an
operational procedure to verify conformance. Discussion of related work and conclu-
sions follow.

2 TheSCIFF agent platform

Fig. 1. TheSCIFF agent platform architecture.

TheSCIFF agent platform, represented in Fig. 1 has been implemented on top of
the JADE agent platform [7].
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TheSCIFF agent platform is composed of these main components: theSOCS-SI3tool,
which can be used for the on-line verification, theSCIFF agent, whose instances will
populate the MAS, and, optionally, other agents which can interact with theSCIFF
agents in the MAS.

The agents communicate through a communication channel, and the messages that
they exchange

TheSOCS-SItool, whose purpose is to observe the agent interaction and to check
that they happen according to the interaction protocols, has been discussed in previous
publications [4] and, for lack of space, we do not describe it here. However, in the fol-
lowing we briefly introduce theSCIFF abductive framework, which we use to specify
both agent policies and interaction protocols.

2.1 TheSCIFF language

We specify the agent policies, as well as interaction protocols, by means of an abductive
logic program (ALP, for short, in the following) [8].

Abductive Logic Programs.An ALP is a triple〈P, A, IC〉, whereP is a logic program,
A is a set of distinguished predicates namedabducibles, andIC is a set of integrity
constraints. Reasoning in abductive logic programming is usually goal-directed (being
G a goal), and corresponds to find a set of abduced hypotheses∆ built from predicates
in A such thatP ∪ ∆ |= G andP ∪ ∆ |= IC. Suitable proof procedures (e.g.,
Kakas-Mancarella [9], IFF [10], SLDNFA [11], etc.) have been proposed to compute
such set∆, in accordance with the chosen declarative semantics.

Events Eventsare our abstraction to represent the agent behaviour.
We consider two types of events:happenedevents (denoted by the functorH) and

expectedevents (denoted byE, and also calledexpectations). Both are abducible, and
represent hypotheses on, respectively, which events have happened and which are ex-
pected to happen:H(mx(. . .), Tx), expresses the fact that a messagemx has been ex-
changed between two agents at timeTx, whereasE(mx(. . .), Tx) says that the message
mx is expected to be exchanged at timeTx.

Protocol specificationAn interaction protocol specifies the allowed interactions among
agents from an external viewpoint, i.e., it specifies the desirable agent observable be-
haviour.

We specify an interaction by means of an abductive logic program. The specifi-
cation, besides representing a declarative representation of the protocol, is also used
directly in theSOCS-SItool as the program for the verification, at run time, that the
agents actually comply to the protocol.

A protocol specificationPprot is defined by the tuple:

Pprot ≡ 〈KBprot, Eprot, ICprot〉
3 The name stands for SOCS Social Infrastructure. SOCS is the acronym of the European project

(IST-2001-32530) which originally supported the research for theSCIFF framework.

Preliminary version – March 24, 2006



– KBprot is theKnowledge Base,
– Eprot is the set ofabducible predicates, and
– ICprot is the set ofIntegrity Constraints.

KBprot specifies declaratively pieces of knowledge about the interaction protocol,
such as role descriptions and the list of participants. It is expressed in the form of clauses
(a logic program) that may also contain in their body expectations about the behaviour
of participants.

The abducible predicatesare those that can be hypothesized in our framework,
namely happened events (H) and expectations (E).

Integrity Constraintsare forward rules, of the formbody→ head, whosebodycan
contain literals and (happened and expected) events, and whoseheadcan contain (dis-
junctions of) conjunctions of expectations. The syntax ofICprot is the same defined for
the SOCS Integrity Constraints [12].

In order to support goal directed interactions, we let the user specify agoal, which
has the same syntax as the body of the clauses inKBprot.

Specification 2.1Integrity Constraints for thequery ref interaction protocol.

H(mx(A, B, query ref(Info)), T) ∧
qr deadline(TD)

→ E(mx(B, A, inform(Info, Answer)), T1) ∧
T1 < T + TD

∨ E(mx(B, A, refuse(Info)), T1) ∧
T1 < T + TD

H(mx(A, B, inform(Info, Answer)), Ti)

→ EN(mx(A, B, refuse(Info)), Tr)

Spec. 2.1 shows the integrity constraints for the FIPAquery ref interaction protocol
[13].

Intuitively, the first IC means that if agentA sends to agentB a query ref message,
thenB is expected to reply with either aninformor arefusemessage byTD time units
later, whereTD is defined in the Social Knowledge Base by theqt deadlinepredicate
(with the example in Spec. 2.2, the value ofTD would be10).

The second IC means that, if an agent sends aninform message, then it is expected
not to send arefusemessage at any time.

2.2 TheSCIFF agent

The same language used for the specification of the interaction protocols can be used, as
we show in Sect. 2.2, for the specification of agent policies. In fact, it can also be used
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Specification 2.2Social Knowledge Base for thequery ref social specification

qr deadline(10).

directly as the implementation language of reactive agents, following the Kowalski-
Sadri schema [6], as we show in Sect. 2.2.

Agent specification An Agent SpecificationPag is an ALP

Pag ≡ 〈KBag, Eag, ICag〉

– KBag is theKnowledge Baseof the agent,
– Eag is the set ofabducible predicates, and
– ICag is the set ofIntegrity Constraintsof the agent.

KBag andICag are completely analogous to their counterparts in the protocol spec-
ification, except that they represent an individual, rather than global, perspective: they
represent, respectively, the declarative knowledge and the policies of the agent.

Eag is the set of abducible predicates: as for the protocols, it contains both expecta-
tions and happened events. The expectations can be divided into two significant subsets:

– expectations about messages whereag is the sender (of the formEag(mx(ag, A,Content))),
i.e., actions thatag intends to do;

– expectations about messages uttered by other participants toag (of the formEag(mx(A,ws,Content)),
with A 6= ag), which can be intended as the messages thatag is able to understand.

Specification 2.3A simple train timetable agent.

H(mx(A, me, query ref(trainTime(TrainCode))), T) ∧
timeTable(TrainCode, TT ime)

→ E(mx(me, A, inform(trainTime(TrainCode), TTime)), T1).

In Spec. 2.3 a simple agent specification is shown: such agent, upon the request of
an information about a train (identified by the train code), always answers back with
the time of that train. In the example, we assume that thetimeTable/2 predicate
is defined in the knowledge base of the agent; for lack of space, we have omitted the
knowledge base. We also assume that the keywordme is used in the expectations to
identify actions that must be executed by the agent.
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Architecture TheSCIFF agent has been modeled on the basis of the Kowalsky-Sadri
cycle for intelligent agents [6]. In particular, the phases ofobserveandact have been
implemented directly in Java, by extending a JADE agent. Thethink phase instead has
been realized using theSCIFF proof procedure, that provides instructions on the basis
of the happened events.

A schematic representation of the blocks composing theSCIFF agent is shown in
Fig. 2.2.

Fig. 2. Schematic diagram of theSCIFF Agent

More in detail, the observation step consists on analyzing all the events that hap-
pened since the observation step of the previous cycle. All the events are registered in
anEvent Buffer, a repository that keeps trace of the new events. Three types of events
are considered:

i) Events corresponding to received messages.
ii) Events corresponding to sent messages.

iii) Events corresponding to internal state changes.

The “think” step consists of using theSCIFF proof procedure to elaborate the hap-
pened events, and to generate a set of alternative expected behaviours. By applying a
further selection function to all the alternatives, only one behaviour is selected, and it is
passed on to the execution block.

Finally, the execution step consists on interpreting the expected behaviour generated
by theSCIFF proof procedure. The expectations about the behaviour of other agents
will not be considered (it will be a task of theSCIFF procedure to understand if such
expectations have been satisfied or not, possibly providing further behaviours). Instead,
expectations that regards actions to be done by the agent itself, will be interpreted as or-
ders to be executed. If the expectation, e.g., is about sending a certain message, then the
execution block will send such message. Then, for each action executed, the execution
block generates a corresponding event and updates the buffer of the happened events:
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in this way it is possible to specify Integrity Constraints in such a way thatSCIFF
procedure can reason also about the actions made by the agent itself.

3 Conformance

In this section, we define the conformance of an agent to an interaction protocol, and
we propose an operational procedure to check conformance.

3.1 Definitions

The intuitive meaning of the notion of conformance is the ability of an agent to interact
with other agents as specified by an interaction protocol.

Definition 1. Given an agent specificationPag ≡ 〈KBag, Eag, ICag〉 and an interac-
tion protocol specificationPprot ≡ 〈KBprot, Eprot, ICprot〉, and given the abductive
program〈KBU , EU , ICU 〉,

– KBU , KBprot ∪ KBag

– EU , Eprot ∪ Eag

– ICU , ICprot ∪ ICag

a possible interactionis a pair (HAP,EXP) whereHAP is a set of events (atoms
with functorH), andEXP is a set of expectations (atoms with functors inEU ) such
that

KBU ∪ HAP ∪ EXP |= G (1)

KBU ∪ HAP ∪ EXP |= ICU (2)

Eag(mx(ag,R, M)) → H(mx(ag, R,M)) (3)

Eprot(mx(A,B,M)) ∧ A 6= ag → H(mx(A,B, M)) (4)

Conditions (1) and (2) express the requirement, usual in abductive frameworks, that
the set of generated abducibles entail both the goal and the integrity constraints.

Condition (3) expresses the fact that the agent will fulfill the expectations that it has
about its own behaviour. Condition (4) formalizes the idea that the other agents will
behave according to the protocol. These two conditions will be used as generative rules
in the operational semantics.

G is the goal of the derivation.

Example 1.Given the specifications in Specs. 2.1 and 2.3, a possible interaction is
given by

HAP = {H(mx(b, a, query ref(trainT ime(10))), 1), (5)

H(mx(a, b, inform(trainT ime(12))), 2)} (6)

EXP = {Eag(mx(a, b, inform(trainT ime(I ′))), T ′), (7)

Eprot(mx(a, b, inform(trainT ime(I ′))), T ′)} (8)
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We can now provide a definition ofconformancebased on the possible interactions,
selecting those that indeed respect the protocol and agent specifications.

Definition 2 (∃-Conformance).An agent specificationPag is existentially conformant
to a protocol specificationPprot if there exists at least one possible interaction(HAPpy,EXPpy)
such that the following implications hold:

Eag(mx(a,A,M)) → H(mx(a,A,M)) (9)

Eprot(mx(S,A, M)) → H(mx(S, A,M)) (10)

Condition (9) requires that ifa had an expectation about sending a message, the
corresponding event should have happened. If this event is not present inHAPpy,
from Def. 1 we can infer that the event was unexpected from the protocol viewpoint.
This situation corresponds to the case wherea is determined to utter a message that is
not envisaged by the protocol: in this case there is not conformance betweena and the
protocol.

Condition (10) requires that every message expected by the protocol indeed hap-
pens. Together with conditions (3) and (4), this means that all expectations involving
the agent being tested are matched by a corresponding expectation of the protocol. This
condition is false if there exists an expectation of the protocol without a corresponding
expectation of the agent, i.e., either ifag may receive (during interactions specified by
the protocol) a message that it is not able to understand, or if the aget failed to utter a
message that the protocol expects.

Example 2.The agent specified in Spec. 2.3 is∃-conformant to the protocol specified
in Spec. 2.1, because the possible interaction in Eq. (8) also respects the conditions in
Eqs. (9) and (10).

Definition 3 (∀-Conformance).An agent specificationPag is universally conformant
to a protocol specificationPprot if for all pairs (HAPpy,EXPpy) of Def. 1 the condi-
tions (9-10) hold.

When Definitions 2 and 3 hold together for an agentag, we say thatag is confor-
mant.

3.2 Operational test

The operational semantics is based on the two versions of theSCIFF proof procedure
developed in the SOCS project. TheSCIFF proof procedure was proven sound [14]
and complete [15];SCIFF terminates [14] for acyclic programs. TheSCIFF proof pro-
cedure considers theH events as a predicate defined by a set of incoming atoms, and
is devoted to generate expectations corresponding to a given history and to check that
expectations indeed match with happened events.SCIFF was developed to check the
compliance of agents to protocols [3]. TheSCIFF proof procedure is based on a rewrit-
ing system transforming one node to another (or to others) as specified by rewriting
steps calledtransitions.
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The g-SCIFF proof procedure, instead, considersH as an abducible predicate and
aims at finding both the set of expectations and the history that fulfils some property
requested as goal. g-SCIFF has been used to prove properties of protocols, such as
security protocols [17], and others. It contains the same rules inSCIFF; in the version
adopted in this paper, we also added as integrity constraints the rules (3) and (4).

SCIFF

!!B
BB

BB
BB

BB

g-SCIFF

HAP1

::ttttttttt
HAP2 //

HAP3

$$JJJJJJJJJ
SCIFF // ∧ // conformance

SCIFF

==|||||||||

Fig. 3. The conformance test.

In order to prove conformance, we apply the two proof procedures to the two phases
implicitly defined in the previous section, as shown in Fig. 3.2. We decompose the proof
of feeble conformance into agenerativephase and atestphase. In the generative phase,
we generate, by means of g-SCIFF, all the possible histories. Of course, those histories
need not be generated as ground histories (the set of ground histories can be infinite),
but intensionally: theH events can contain variables, possibly with constraintsà la
Constraint Logic Programming [16].

In the test phase, we check withSCIFF the compliance of the generated histories
both with respect to the agent and the protocol specifications. If all the histories are
conformant, the agent is feeble conformant to the protocol: at runtime, all the possible
agent instances will behave accordingly to the protocol . Otherwise, if there exists at
least one history that is not conformant, the agent is not conformant.

4 Related work

Our work is highly inspired by Baldoni et al. [18], who adopt a Multi-agent Systems
point of view in defining a priori conformance in order to guarantee interoperability
of Web Services whose interactions are specified by choreographies. As in [18], we
give an interpretation of the a-priori conformance as a property that relates two formal
specifications: the global one determining the interactions allowed by the interaction
protocols and the local one related to the single agent policies. But, while in [18] a
specification is represented as a finite state automation, we claim that the formalisms
and technologies developed in the area of Computational Logic in providing a declar-
ative representation of the social knowledge, could be applied also in the context of
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interaction protocol with respect to the conformance checking of agents. For example,
a difference between our work and [18] can be found in the number of parties as they
can manage only 2-party choreographies while we do not impose any such limit on the
number of interacting agents.

In [19, 20], the authors apply a formalism based on computational logic to the a-
priori conformance in the MAS field. Their formalism is similar to the one we propose,
but they restrict their analysis to a particular type of protocols (namedshallow pro-
tocols). Doing this, they address only 2-party interactions, without the possibility of
expressing conditions over the content of the exchanged messages.

The use of abduction for verification was also explored in other work. Noteworthily,
Russo et al. [21] use an abductive proof procedure for analysing event-based require-
ments specifications. Their method uses abduction for analysing the correctness of spec-
ifications, while our system is more focussed on the check of compliance/conformance
of a set of agents.

5 Conclusions

In this paper, we introduced an agent platform based on theSCIFF abductive frame-
work. The main features of the framework are the possibility to define and check the
conformance of an agent to a protocol, and the fact that the specification of an agent
can be used, directly, as its implementation as a reactive system.

We described the architecture of the system, the language for the specification of
the agent policies and the interaction protocols, a declarative definition of conformance
of an agent to a protocol, and an operational procedure to verify conformance.
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